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Abstract
Existing algorithms for generalized semi-infinite programs can only handle lower-level
constraints containing equality constraints depending on upper-level variables (so-called
coupling equality constraints) under limiting assumptions. More specifically, discretization-
based algorithms require that the coupling equality constraints result in some lower-level
variables being determined uniquely as implicit functions of the other lower-level and
upper-level variables. We propose an adaptation of the discretization-based algorithm of
Blankenship & Falk and demonstrate it can handle coupling equality constraints under the
weaker assumption of stability of the solution set for these constraints in the sense of Lips-
chitz lower semi-continuity. The key idea is to allow a perturbation of the lower-level variable
values from discretization points in connection with changes in the upper-level variables in
the discretized upper-level problem. We enforce that these perturbed values satisfy the cou-
pling equality constraints while remaining close to the discretization point, provided we can
guarantee the stability of the solution in the sense that a nearby solution exists for small
changes of the upper-level variables. We provide concrete realizations of the algorithm for
three different situations: i) when knowledge about a certain Lipschitz constant is available,
i i) when the coupling equality constraints are assumed to have full rank, and i i i) when the
coupling equality constraints are additionally linear in the lower-level variables. Numerical
experiments on small test problems and a physically motivated problem related to power flow
illustrate that the approach can be successfully applied to solve the challenging problems,
but is currently limited in terms of scalability.
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1 Introduction

We are concerned with the generalized semi-infinite optimization program (GSIP)

min
x∈X f (x)

s.t. g(x, y) � 0, ∀ y ∈ Y(x)
(GSIP-eq)

where the description of the feasible region of the lower level Y(x) contains coupling con-
straints, both equality heq and inequality hineq as

Y(x) := { y ∈ Ȳ � Rny | hineq(x, y) � 0, heq(x, y) = 0} . (1)

We call X the host set of the upper-level variables x and Ȳ the host set of the lower-level
variables y. Throughout, we make the following standard assumption of compactness and
continuity:

Assumption 1 The hosts setsX and Ȳ are compact and the functions f , g, hineq and heq are
continuous on the hosts sets X and Ȳ .

Solving GSIPs and the related problem classes of (standard) semi-infinite problems (SIP)
and bilevel-optimization problems (BLP) has many applications such as design centering,
robust optimization, Chebyshev approximation and parameter estimation in thermodynamics
of mixtures (see [1, 2] and references therein). Accordingly, a multitude of approaches for
handling this problem have been discussed in the literature under different assumptions on
the lower-level problem:

max
y∈Y(x)

g(x, y) . (LLP)

If problem (LLP) is convex, duality or stationarity can be used to formulate (GSIP-eq) as
a single-level optimization problem. For example, in [3], the KKT conditions of the lower-
level problem are embedded, leading to a problem with equilibrium constraints that must be
smoothed. In this case, the inclusion of coupling equality constraints is straightforward [3].
However, convexity of the lower level is a strong assumption that is often violated in practice.
Therefore, methods allowing for nonconvex lower-level problems are of interest.

In this work, we specifically focus on the class of adaptive discretization-based algorithms
that are applicable to the case of nonconvex lower-level problems and aim for a global
solution. This requires the global solution of the subproblems, which can be done using
existing numerical solvers in a black-box fashion. Other approaches for solving SIPs such as
approaches based on convexification of the lower-level [4, 5], based on interval arithmetic [6,
7] or the lower-bounding approach of [8] could potentially be extended to find global optima
ofGSIPwith nonconvex lower-level. However, discussions of the required extensions, aswell
as additional ones thatwould enable the incorporation of coupling equality constraints in these
approaches, appear to be absent from the existing literature. As a result, a detailed comparison
of solution approaches forGSIP is outside the scope of ourwork. Interested readers are instead
referred to [1, 2, 9] for an overview. Outside of algorithms directly targeted for the solution
of GSIPs, existing algorithms for the solution of BLPs are of interest because the problem
classes of GSIP and BLP are heavily connected [10]. Therefore, an approach for BLP with
coupling equality constraints could give insights into handling coupling equality constraints
in the context of GSIP. However, while many different algorithms for BLP with nonconvex
lower-level exist [11–13], they are not applicable for coupling equality constraints.

The solution of GSIPwith coupling equalities is not straightforward in adaptive discretiza-
tion methods. For example, the approaches by Mitsos and Tsoukalas [14] or Tsoukalas et al.
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[15, 16] can be applied to solve GSIP globally without assuming convexity; however, they
rely on a critical assumption that restricts their applicability in the context of coupling equal-
ity constraints. Specifically, one of the necessary assumptions (see Assumption 2) requires,
roughly speaking, that it is safe to ignore lower-level points on the boundary of the set defined
by the coupling lower-level constraints. Notably, this means no coupling equality constraints,
even when linear, are allowed, which can be limiting.

To address this limitation, two discretization-based methods that allow coupling equal-
ity constraints under certain circumstances have been presented in the open literature. In
the approach of Djelassi et al. [17], we assumed that the lower-level variables are a priori
divided into dependent and independent variables in such a way that the dependent variables
are uniquely defined by the values of the upper- and independent lower-level variables and
possibly by so-called selection constraints inherent to the problem. Because of this unique-
ness, only the independent variables have to be fixed by the discretization points, while the
dependent variables are added as additional variables to the upper-level problems, together
with the coupling equality constraints. Previously, Stuber et al. [18] had proposed a different
approach under a similar assumption. Instead of adding additional variables to the upper-level
problems, they use a parametric interval-Newton method to bound the range of the implicit
variables and then employ a global optimization algorithm that uses a similar method inter-
nally to handle the implicit functions directly. A first step in extending this approach to a finite
number of solutions for the dependent lower-level variables is found in [19], again based on
parametric interval-Newton methods, for enclosing finitely many real solution branches of
parameter-dependent nonlinear systems of equations. However, it remains unclear how these
results can be used to solve the problem problem (GSIP-eq). In summary, existing algorithms
for solving GSIPs with nonconvex lower levels and coupling equality constraints rely on an a
priori given partition into dependent and independent lower-level variables and the assump-
tion that the dependent lower-level variables can be defined as an (implicit) function that is
unique for given values of the upper- and independent lower-level variables.

In this work, we identify additional situations under which coupling equality constraints
can be handled bymodifying the existing discretization approach for generalized semi-infinite
programming. More specifically, we propose a modification of the discretized upper-level
problem. The key idea is to allow a perturbation of the lower-level variable values from
the discretization points in response to changes in the upper-level variables. The perturbed
values are selected to satisfy the coupling equality constraints while ensuring they remain
close to the original discretization points, provided we can guarantee stability in the sense of
the existence of a nearby solution as the upper-level variables change. In this way, we avoid
an a priori partition into dependent and independent variables by considering the coupling
equality constraints as underdetermined systems of equations. As we will see, this allows us
to solve problems where a constant partition is invalid.

In the remainder of this section, we introduce our notation. In Section 2, we first discuss
existing discretization-based approaches for solving generalized semi-infinite optimization
problems that do not consider coupling equality constraints and analyze the shortcomings of
these approaches when coupling equalities are introduced. We also illustrate that assuming
some lower-level variables can be interpreted as (implicit) functions can be limiting. We then
present our idea to amend these shortcomings in Section 3. Afterward, we formalize our
approach under the assumption that the solution set of the coupling equality constraints is
locally lower Lipschitz semi-continuous. In Section 4, we identify special cases where this
assumption holds and specialize our proposed method. Numerical experiments and imple-
mentation remarks are presented in Section 5.
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Throughout, we use bold letters to denote vectors and matrices and calligraphic font
for sets. We use the convention that the size of a vector x is denoted by nx and that the
elements of the vector x are denoted by xi , i ∈ {1, . . . , nx }. Further, we use ‖ · ‖ to denote
an arbitrary vector norm or its induced matrix norm and denote a ball with radius r around
the point x̂ with Br (x̂) := {

x ∈ Rnx | ‖x − x̂‖ � r
}
. Considering a vector-valued function

with k vector-valued arguments f : Rn1 × Rn2 × ... × Rnk → Rm , we use the notation
Di f : Rn1 × Rn2 × ... × Rnk → Rm × Rni for i ∈ {1, . . . , k} to denote the Jacobian
of f with respect to its i-th argument. We use Df instead if the function has only a single
argument. For second-order derivatives, we analogously use Di, j f : Rn1 ×Rn2 ×...×Rnk →
Rm × Rni × Rn j .

2 Existing Discretization-based algorithms for (G)SIP

The general idea in the discretization-based algorithms for (G)SIPs in [14, 17, 18, 20, 21]
goes back to a procedure by [22]. Therein, the standard semi-infinite optimization problem

min
x∈X f (x)

s.t. G(x, y) � 0, ∀ y ∈ Y
(SIP)

is solved by adaptive discretization, resulting in outer approximation, i.e., the lower bounding
problem

min
x∈X f (x)

s.t. G(x, yd) � 0, ∀ yd ∈ YD
(SIP-LBP)

is solved for a finite set of discretization points YD
k ⊂ Y . This constitutes a relaxation of

problem (SIP) and provides a lower-bound and an iterate x̄ for the upper-level variable x.
Then a solution y∗ of the lower-level problem max

y∈Y
G(x̄, y) is calculated. If G(x̄, y∗) � 0,

the iterate x̄ is feasible and thus optimal. Otherwise, y∗ is added to YD , which guarantees
that x̄ is no longer feasible in the next iteration of problem (SIP-LBP). Convergence to a
feasible point is only guaranteed in the limit. Several authors [16, 20, 23] have extended this
approach to generate feasible iterates in finite iterations.

2.1 Discretization based algorithms for GSIP without coupling equality constraints

In [14, 21], problem (GSIP-eq) is considered without coupling equality constraints and is
reformulated to

min
x∈X f (x)

s.t. g(x, y) � 0

nineq∨

i=1

hineqi (x, y) > 0, ∀ y ∈ Y
(GSIP-REF)

and then relaxed to

min
x∈X f (x)

s.t. g(x, y) � 0

nineq∨

i=1

hineqi (x, y) � 0, ∀ y ∈ Y.
(GSIP-REL)
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It is further assumed that the infimum of problem (GSIP-REF) is equal to the minimum of
problem (GSIP-REL) (see [14, Assumption 2] and [17, Assumption 5]). Given this assump-
tion, the lower-bounding approach of [22] can be used with

G(x, y) := min

{
g(x, y), min

i=1...nineq
− hineqi (x, y)

}
(2)

in problem (SIP). The resulting lower-bounding problem can be written as

min
x∈X f (x)

s.t. G(x, yd) � 0, ∀ yd ∈ Yd .
(LBP)

In [14, 17, 21], a so-called lower-level Slater point is searched and used as the discretization
point to be added to YD in problem (SIP-LBP). In [17, 21] this is achieved by solving the
problem

max
y

G(x, y) s.t. y ∈ Y(x). (GSIP-LLP)

In [14], we show that the assumption of equivalence of problem (GSIP-REL) and problem
(GSIP-REF) is slightly weaker than the following assumption on the existence of such a
lower-level Slater point:

Assumption 2 Let f ∗ be the infimum of problem (GSIP-REF). Each infeasible upper-level
point x̂ ∈ X with f (x̂) < f ∗ can be excluded by a lower-level Slater point with respect to
the inequality constraints, i.e,

∃ ŷ ∈ Y : g(x̂, ŷ) > 0 ∧ hineq(x̂, ŷ) < 0.

It is paramount that the discretization point is chosen as a Slater point with respect to
the lower-level constraints because this ensures that the discretization point remains lower-
level feasible in the neighborhood of the last upper-level iterate. This is not possible in the
context of coupling equality constraints. As the following example shows, this prohibits a
naive application of the idea of [22].

Example 1 ( [24]) Consider the GSIP

min
x∈[0,1]2

x1

s.t. x1 � 1, ∀y ∈ [0, 1] : y = x2
(3)

and any upper-level point x̄ with x1 = 0. The only solution to the lower-level problem
is y1 = x̄2. When we consider the discretization point y1 fixed, the resulting discretized
problem is

min
x∈[0,1]2

x1

s.t. x1 � 1, ∀yd ∈ {y1} : yd = x2.
(4)

In this problem all upper-level points x ∈ [0, 1]2 with x2 
= x̄2 are feasible. Thus, x̄ with
an arbitrarily small change in x2 is feasible in the discretized problem. In other words, no
neighborhood of x̄ is rendered infeasible by the discretization point. As a consequence,
x1 = 0 is feasible for all finite discretizations, while the optimal value is 1. This means
that an improvement of the resulting lower-bound will not occur in finite steps even when
ignoring the numerical difficulties of representing the constraint x2 
= yd .
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2.2 Discretization based algorithms for GSIP with coupling equality constraints

When considering coupling equality constraints, it becomes evident that treating discretiza-
tion points is problematic, as illustrated in Example 1. An alternative approach would be to
consider some lower-level variables as a function of the upper-level variables. For example,
in Example 1, the coupling equality constraint uniquely determines y as a function of x2 and
can thus be used to eliminate the lower-level variable y as a degree of freedom. This is the
key idea of the approaches in [17, 18].

These approaches rely on a decomposition of the lower-level variables into dependent and
independent variables y = [ ydep,T , yindep,T ], where the coupling equality constraints heq

uniquely determine the dependent lower-level variables ydep as a function ỹdep(x, yindep)
of upper-level variables x and independent lower-level variables yindep . In other words, only
the independent lower-level variables constitute degrees of freedom. Consequently, only
the independent lower-level variables are fixed to discretization points in the discretized
upper-level problem, i.e., in the lower bounding subproblem problem (SIP-LBP), while the
dependent variables are adjusted such that the coupling equality constraints are satisfied.
Such a decomposition does not always exist, as the following example shows:

Example 2 The GSIP with coupling equality constraints

min
x∈[−0.75,0.75] − x1

s.t. (y1 − x1)(1 + y2) + x1 � 0, ∀ y ∈ Y(x)
(5)

with

Y(x) := { y ∈ [−1, 1]2 | heq(x, y) = (x1 − y1)(x1 − y2) = 0} (6)

has the coupling equality constraint heq(x, y) = (x1 − y1)(x1 − y2) = 0 which does not
allow for a unique interpretation as an implicit function from x and parts of y to the rest of
y. Indeed for given x1, x2, all y ∈ [−1, 1]2 with y1 = x1 or y2 = x1 are lower-level feasible.
Choosing one of the lower-level variables as the dependent variable would ignore one of the
two solution branches, constituting a lower-level restriction. Indeed, fixing y1 as a function
of y2 and x would lead to (1 + y2)(x − x) = 0 � 0, which changes the solution drastically.

In conclusion, expressing some lower-level variables in terms of others, such that the
equality constraint is fulfilled, is not always possible. Further, finding such a decomposition
can be difficult, and it is unclear how to find such a decomposition in general, even if it exists.

3 Handling coupling equality constraints with Lipschitz lower
semi-continuous solution set

Example 1 shows that we must find a modification to problem (SIP-LBP) so that at least an
open neighborhood of x∗,(0) will be rendered infeasible. As long as the resulting problem
is still a relaxation of problem (GSIP-eq), we can expect to obtain convergence in the limit
(this will be shown for our approach in the upcoming Theorem Theorem 1).

The key idea under the assumption of a unique solution discussed in Section 2.2 is to fix
some lower-level variables by discretization and vary the others to fulfill the coupling equality
constraints. If the solution to the coupling equality constraints is not unique, it is unclear how
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exactly the variables should be varied. In this case, we propose to select solutions close to
the past discretization point, assuming the solution set of the coupling equality constraints
is sufficiently stable so that such a solution exists after small changes in the upper-level
variables. Conceptually, we would like to emulate embedding a local solver for systems of
equations that converges to a nearby solution when started at the discretization point. A
similar idea is used in [25], where the equivalent to our upper-level variable x is fixed in
a sampling scheme. Instead of embedding such a local solver into the global optimization
procedures, we would like to utilize the existing capability of optimizers to fulfill equality
constraints. Thus, similar to [17], we propose to add a variable vector yd,′ to the relaxation
of the upper level with the constraint that it fulfills the coupling equality constraints. So far,
the approach is similar to so-called high-point relaxation in bilevel optimization [26]. On its
own, this modification will not be advantageous. The following two problems will arise.

Firstly, allowing the added copy of the lower-level variables yd,′ ∈ Ȳ to be freely chosen
without considering the corresponding discretization point yd will not guarantee that the
current iterate x̂ will be rendered infeasible, let alone a neighborhood. This is because a
second solution to the coupling equality constraints for the current iterate x̂ could be a less
restrictive choice for the lower-level variables yd,′ . To address this problem, we aim to force
a selection of yd,′ close to yd when x has not moved far from x̂. To this end, we limit the
distance of yd,′ from yd proportionally to the distance of x from x̂.

Secondly, adding the coupling equality constraints might make points x ∈ X infeasible
for which there exists no solution yd,′ ∈ Ȳ which fulfills the coupling equality constraints
heq(x, yd,′) = 0. This is even more likely after we add the proportionality constraint of the
last paragraph. To avoid this, we need the following assumption regarding the local stability
of the solution set of the coupling equality constraints. The overall idea of our approach and
Assumption 3 are visualized in Fig. 1.

Assumption 3 For each infeasible upper-level point x̂ ∈ X and lower-level feasible point ŷ ∈
Y(x̂), the solution set of the lower-level equality constraints S(x) := { y ∈ Ȳ | heq(x, y) =
0} fulfills the following Lipschitz lower semi-continuity condition [27]

∃δ̂x̂ , Lx̂ > 0 : ∀x ∈ B
δ̂x̂

(x̂)
[(
S(x) ∩ BLx̂‖x−x̂‖( ŷ)

) 
= ∅]
, (7)

and the radii δ̂x̂ in problem (7) are bounded from below with a positive number δx .

Assumption 3 allows for the solution to be nonunique. It requires local stability of the
solution set in the sense that at least one solution does not suddenly vanish when the upper-
level variables are changed. Indeed, if a unique solution exists, Assumption 3 is implied by
the Lipschitz continuity of this solution in regard to the upper-level variables.

In the following, we will additionally make the following assumption, which is identical
to Assumption 4 in the absence of coupling equality constraints but requires that the Slater
point also fulfills the equality constraints.

Assumption 4 Let f ∗ be the infimum of problem (GSIP-REF). Each infeasible upper-level
point x̂ ∈ X with f (x̂) < f ∗ can be excluded by a lower-level Slater point with respect to
the inequality constraints of the lower-level problem, i.e.,

∀x̂ ∈ X : f (x̂) < f ∗∃ y ∈ Y(x̂) :
[
g(x̂, y) > 0 ∧ hineq(x̂, y) < 0

]
(8)

In the next section, we formalize the sketched solution idea. We first state and discuss
the modified lower-bounding problem, followed by the resulting algorithm, and show that
the latter converges under the preceding assumptions. We present the algorithm and the
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Fig. 1 Effect of constraining the deviation from the discretization point by the deviation from the corresponding
upper-level iterate. The thick curves show two solution branches for the coupling equality constraints heq .
Only points on the solid magenta branch show a violation of the SIP constraint. On the left: We allow a
deviation from the discretization point yd , but limit the change to the set T (represented by the gray area).
In this example, the allowed deviation grows proportionally to the distance in the upper-level variables. Thus,
the second (blue, square-dotted) solution branch can only be selected after x has moved at least �x. Since
Assumption 3 holds, this is possible without cutting off the solution branch the discretization point was on.
Without limiting the deviation from the deviation point, the optimizer could select wd

1 without changing

from xd . On the right: If the allowed change of the lower-level variable from yd is too restrictive, we might
artificially introduce infeasibility; thus the need for Assumption 3

associated proofs in terms of a set-valued function T . Intuitively, the role of this function
is to restrict the deviation of lower-level variables values from the discretization points in
the discretized upper-level problem, see Fig. 1. We will require T to fulfill the following
properties for any xd ∈ X and yd with yd ∈ Y(xd):

P.1 T (xd , xd , yd) = { yd} (consistency)
P.2 ∀x ∈ UT (xd , yd)

[(
S(x) ∩ T (x, xd , yd)

) 
= ∅
]
(satisfiability)

P.3 ∀δw > 0 ∃δt > 0 : ∀xd ∈ X
[
‖x − xd‖ � δt �⇒ ∀w ∈ T (x, xd , yd)

[‖w − yd‖ � δw

]]
(continuity).

where UT (xd , yd) denotes a validity neighborhood for property P.2 which we assume
includes at least a ball around xd with fixed radius δT , i.e., UT (xd , yd) ⊇ BδT (xd) for
each infeasible upper-level point xd ∈ X . The set T can be seen as a generalization of the
ball BLxd ‖x−xd‖( yd) in Assumption 3. Indeed, note that as a result of Assumption 3, the
choice

T (x, xd , yd) := BLxd ‖x−xd‖( yd)

always fulfills all the listed properties. However, in this case, knowledge of the Lipschitz
constant Lxd would be needed to implement our proposed procedure in practice. We later
discuss different choices for T where this knowledge is not required. Therefore, we will
present the results regarding the lower-bounding problem and the resulting algorithm for
arbitrary T with properties P.1, P.2 and P.3.
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3.1 Lower-bounding problem

As in the reformulation of GSIP to SIP discussed in the introduction, we utilize

G(x, y) := min

{
g(x, y),min

i
{−hineqi (x, y)}

}

to combine the objective and inequality constraints of the lower level into a single functionG
and shorten the notation. To handle coupling equality constraints, we propose the following
lower-bounding problem instead of problem (LBP)

min
x∈X ,wd∈ ¯Rny ,d∈D

f (x)

s.t.
{
G(x,wd) � 0 ∧

(
wd ∈

(
S(x) ∩ T (x, xd , yd)

))}

∨
{
x /∈ UT (xd , yd)

}
, ∀d ∈ D .

(LBP-eq)

Therein, the additional variableswd , d ∈ D replace fixed values of the discretization variables
in G compared to problem (LBP). They are constrained to fulfill the coupling equality
constraints (wd ∈ S(x)) and to staywithin a controlled distance from the discretization points
yd , d ∈ D, (wd ∈ T (x, xd , yd ), unless the upper variables x are outside the neighborhood
UT . We obtain the following results regarding problem (LBP-eq).

Lemma 1 Given Assumption 1, and a SIP-infeasible upper-level point xd ∈ X , a Slater point
yd with respect to the inequalities of the lower-level, i.e., hineq(xd , yd) < 0, that proves the
SIP-infeasiblity of the upper-level point xd , i.e., yd ∈ Y(xd) and g(xd , yd) > 0, renders all
points in a neighborhood Bδ(xd) of that upper-level point with radius δ > 0 infeasible in
problem (LBP-eq).

Proof Note that the constraint in problem (LBP-eq) is a disjunction. For the second part of
the disjunction, i.e., x /∈ UT (xd , yd), the claim follows trivially.

For the first part of the disjunction, we show that

∃δ > 0 : ∀x ∈ Bδ(xd),∀w ∈ T (x, xd , yd) [G(x,w) > 0] .

Since the function G is uniformly continuous (continuous on a compact set), we obtain:

∀δ1 > 0 ∃δ2 > 0 : ∀w, x : ‖w − yd‖ � δ2 and ‖x − xd‖ � δ2
[
‖G(x,w) − G(xd , yd)‖ � δ1

]
.

(9)

Since the discretization point yd is a lower-level Slater point with respect to the inequal-
ities, we have G(xd , yd) = εd > 0 (otherwise g(xd , yd) � 0 means that the upper-level

point xd was SIP-feasible). Set d1 in problem (9) to εd

2 . From problem (9), we obtain the
existence of a δ2 such that

∀w, x : ‖w − yd‖ � δ2 and ‖x − xd‖ � δ2 :
[
G(x,w) � εd

2
> 0

]
.

Sincewe enforcew ∈ T (x, xd , yd), the propertyP.3 ofT means that there is a δt > 0 such
that ‖x − xd‖ � δT �⇒ ‖w − yd‖ � δ2. As a result, the claim holdswith δ = min{δ2, δt }.

��
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Lemma 2 Given a convergent sequence
{
xk

}
k∈N of an SIP-infeasible upper-level points

converging to x̄, i.e., xk
k→∞−−−→ x̄, and a corresponding sequence of lower-level points{

yk
}
k∈N as in Theorem 1. If there exists a fixed lower bound ε̄ > 0 for the function values

G(xk, yk) for all k, there exists a fixed lower bound δ̄ for the radius δ in Theorem 1 for all
k. In other words

[
∃ε̄ > 0 : ∀k ∈ N

[
G(xk, yk) � ε̄

]]
�⇒

[
∃δ̄ > 0 : ∀x ∈ Bδ̄ (x

k),∀w ∈ T (x, xk, yk) [G(x,w) > 0]

]
. (10)

Proof Follows from the proof of Theorem 1 after replacing εd with ε̄ and noting that the
uniform continuity of G and the corresponding property P.3 of T guarantee the existence of
δ2 and δT that are independent of xd and yd . ��
Lemma 3 Given Assumption 3, the problem (LBP-eq) is a relaxation of the original GSIP in
problem (GSIP-eq).

Proof First, denote the feasible set of problem (GSIP-eq) as FGSI P and the neighborhood
around the point xd ∈ X and its complement with Bd := {x ∈ X | x ∈ UT (xd , yd)} and
B̄d := {x ∈ X | x /∈ UT (xd , yd)}, respectively.

Further, denote with FHP the projection of the feasible region of the constructed
lower-bounding problem (LBP-eq) into the x-coordinate. The set FHP is obtained by the
intersection of the feasible sets of upper-level variables for each discretization point index d ,
i.e.,

FHP =
⋂

d∈D

{
FHP,d ∪ B̄d

}
(11)

with
FHP,d :=

{
x ∈ Bd | ∃wd ∈ (S(x) ∩ T (x, xd , yd)) : G(x,wd) � 0

}
.

Since the objective functions of problem (GSIP-eq) and problem (LBP-eq) are identical,
we need to show that replacing the feasible region of the original problem FGSIP with the set
FHP constitutes a relaxation, i.e.,FGSIP ⊆ FHP . For each discretization point index d ∈ D,
define the set of points feasible in the neighborhood around a given point xd , d ∈ D as

FM,d :=
{
x ∈ Bd | max

w∈S(x)
G(x,w) � 0

}
.

If we combine these sets with the complement of the neighborhood B̄d , where we ignore the
semi-infinite constraint, we obtain a relaxation:

FGSI P ⊆
⋂

d∈D

{
FM,d ∪ B̄d

}

This follows from the fact that this combination is a relaxation for each discretization index
d

FGSI P =
(
FGSI P ∩ B̄d

)
∪

(
FGSI P ∩ Bd

)

⊆ B̄d ∪
(
FGSI P ∩ Bd

)

⊆ B̄d ∪ FM,d

(12)
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and that the intersection of relaxations is also a relaxation.
We note that the sets FM,d can be relaxed to the feasible set for a relaxed SIP constraint,

where the lower-level variable is restricted to a small area around the discretization point,
i.e., FM,d ⊆ FMM,d with

FMM,d :=
{

x ∈ Bd | max
w∈Ȳ∩S(x)∩T (x,xd , yd )

G(x,w) � 0

}

.

Because of Assumption 3, we know that Ȳ ∩ S(x) ∩ T (x, xd , yd) does not become empty
and thus FMM,d ⊆ FHP,d .

The inclusion FM,d ⊆ FHP,d is sufficient to prove the claim of the theorem FGSIP ⊆
FHP because the inclusion relationship in preserved after taking the union of FHP,d and
FMM,d with B̄d , respectively, and taking the intersection over all d ∈ D:

FGSI P ⊆
⋂

d∈D

{
FM,d ∪ B̄d

}

FM,d⊆FMM,d�⇒ FGSI P ⊆
⋂

d∈D

{
FMM,d ∪ B̄d

}

FMM,d⊆FHP,d�⇒ FGSI P ⊆
⋂

d∈D

{
FHP,d ∪ B̄d

}
= FHP

(13)

��

3.2 Lower-bounding algorithm

We use the lower-bounding problem in the adaptive discretization algorithm listed in Algo-
rithm 1. The following theorem discusses the convergence of this algorithm.

Theorem 1 Given Assumptions 3, 4 and 1, the lower bounding procedure in Algorithm 1
either finitely proves the problem to be infeasible, finitely returns a global solution or produces
a sequence of iterates

{
xi

}
i∈N such that each accumulation point is a global solution of

problem (GSIP-eq).

Proof (similar to Lemma 4.3 in [24]) Assume that the algorithm terminates finitely. Denote
with i the final iteration. Then, eitherGi � 0 problem (GSIP-LLP) was infeasible or problem
(LBP-eq) was infeasible. In the latter case, since problem (LBP-eq) is a relaxation according
to Theorem 3, the original problem (GSIP-eq) must be infeasible. In the former two cases,
the current iterate xi is SIP-feasible according to Assumption 4.

If Algorithm 1 does not terminate finitely, there is an infinite sequence of iterates. Because
of the compactness of X , there is at least one converging subsequence. Without loss of
generality, pick a single subsequence denoted by {xnk }k∈N with nk ∈ N and nk + 1 > nk for

k > 0 that converges to a point x̄. If Gnk k→∞−−−→ 0, the accumulation point x̄ is SIP-feasible.
Otherwise, there must exist an ε̄ > 0 such that Gnk > ε̄ (since the algorithm does not
terminate, we must have Gnk > 0 for all k ∈ N). According to Theorem 1, this would mean
that in each step of the subsequence k a neighborhood Bδ(xnk ) of the last iterate xnk becomes
infeasible in problem (LBP-eq). According to Theorem 2 the radius of this neighborhood δ

does not fall below the fixed value δ̂ := min{δ̄, δx }. Since X is compact, problem (LBP-eq)
would become infeasible after a finite number of steps k, which leads to a contradiction. ��
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// Initialize
D ← {};
i ← 0;
LBD ← −∞;
while true do

Solve problem (LBP-eq);
if Infeasible then

Problem (GSIP-eq) is infeasible. return Infeasible;
else

Save the solution xi and the objective value f (xi );
end
// Update lower bound

LBD := f (xi );
Solve problem (GSIP-LLP) given xi saving the solution yi and the objective value Gi ;

if Infeasible or Gi � 0 then
Found a feasible point. return xi ;

end
// Update index set with index of new discretization point yi and

upper-level iterate xi

D := D ∪ {i};
i := i + 1;

end
Algorithm1:The proposed algorithm for the solution of generalized semi-infinite programs
(GSIPs) with coupling equality constraints.

3.3 Sufficient conditions for Stability of the lower-level solution set

We are interested in sufficient conditions for the stability of the lower-level solution set, more
specifically for Assumption 3 to hold. The following example shows that without further
assumptions, a problem with arbitrary coupling equality constraints heq can be reformulated
such that the characteristics of heq are essentially hidden within the host set Ȳ .

Example 3 Consider X = [xL , xU ] and Ȳ1 = [ yL , yU ] and define the lower-level feasible
set as Y1(x) = { y ∈ Ȳ1 | heq(x, y) = 0}. Using a more complicated host set, we can
reformulate this as a problem where all coupling equality constraints are linear.

Indeed, combine the old lower-level variables y with the new variables z according to
wT = [ yT , zT ]. Then, we can use the more complicated host set W̄ = {w ∈ Ȳ1 × X |
heq(z, y) = 0} to formulate the feasible set of the lower-level as Y2(x) = {w ∈ W̄ | z− x =
0} which has a simple linear coupling equality constraint. More concretely, the problem

max
y∈[ yL , yU ]

g(x̄, y)

s.t. heq(x̄, y) = 0
(14)

can also be written as

max
( y,z)∈W̄

g(x̄, y)

s.t. x̄ − z = 0
(15)

with W̄ = {( y, z) ∈ [ yL , yU ] × X | heq(z, y) = 0}. The case where inequalities defining
Ȳ become active is similarly problematic.
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In order to simplify the theoretical analysis and the statement of the algorithm,we consider
a formulation of the problem where all relevant details are explicitly stated in terms of the
lower-level constraints. To formalize this, we introduce the following assumption that asserts
the redundancy of the host set Ȳ .

Assumption 5 The host set Ȳ is redundant in the following sense: For any (visited) infeasible
upper-level point x̂, any solution y∗ to problem (GSIP-LLP) is strictly in the interior of the
host-set:

∃τ > 0 : ∀ y∗ ∈ argmin
y∈Y(x̂)

G(x, y)
[
Bτ ( y∗) ⊂ Ȳ

]
.

If the original host set was defined by a combination of bound constraints and continuous
constraints, Assumption 5 can easily be satisfied with a simple reformulation. Indeed, let the
original host set be defined as

Ȳ1 = { y ∈ [ yL , yU ] | veq( y) = 0 ∧ vineq( y) � 0}
then we can add veq to the coupling equality constraints, add vub( y) := y − yU , vlb( y) :=
− y + yL , as well as vineq to the coupling inequality constraints hineq . As a result, the new
host set with any τ > 0

Ȳ2 = [ yL − τ, yU + τ ]
will satisfy Assumption 5.

Assuming that the coupling equality constraints heq are continuously differentiable, the
rank of the Jacobian with respect to the lower-level variables y can potentially be used to
validate Assumption 3. Indeed, given Assumption 5, the constant rank of the Jacobian of
the coupling equality constraints in the neighborhood of x̂ and y∗ as defined in Assumption
5 is a sufficient condition [28, 29] for Assumption 3. Because of the lower semi-continuity
of the rank of a matrix, full rank at x̂ and y∗ also suffices. Most constraint qualifications
for the lower-level problem, such as MFCQ, imply full rank of the Jacobian of the coupling
equality constraints. Thus, one might consider this full-rank condition a weak assumption.
According to [30], we can usually expect this condition to hold for most upper-level variables
x. However, this assumption is not trivial since we would need the condition to hold for all
superoptimal upper-level variables. The following example illustrates that Assumption 3 can
fail to hold, even for relatively simple examples.

Example 4 Define q( y) = (y1 + 0.75)(y1 + 0.6)(y1 − 0.3) and heq(x, y) = q( y) − x1. As
illustrated in Fig. 2, q( y) has a local minimum near 0. Let the discretization point yd be
chosen as the local minimizer and take xd1 = q( yd). Then heq(xd , yd) = 0, but for x1 < xd1 ,
there exist no solution y to heq(x, y) = 0 that is close. Clearly, Assumption 3 does not hold.

Although the rank of the Jacobian can provide valuable insights into the validity of
Assumption 3, it does not provide a complete understanding of the applicability of Algorithm
1. Specifically, although full or constant rank of the Jacobian is a sufficient condition, it is not
necessary for Assumption 3. Indeed, the coupling equality heq(x, y) = (x1 − y1)(x1 − y2)
from Example 2 has a singular Jacobian for any t ∈ R and x1 = t, y1 = t, y2 = t , but there
clearly always exist a solutionw with ‖ y − w‖ � 1|x1− t | and heq(x,w) = 0. Furthermore,
while full rank of the Jacobian of the coupling equality constraint is sufficient for Assumption
3, to implement the presented algorithm we still need a way to calculate the corresponding
Lipschitz constant L or find an alternative way to construct a restrictive set T satisfying
properties P.1 through P.3. We discuss this in the next section.
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Fig. 2 Illustration of Example 4 where Assumption 3 does not hold. Here, heq (x, y) = q(x) − x1. When
reducing x1 further, no solutions exist close to the marked point

4 Specializations under full-rank assumption

In practice, we cannot always expect the knowledge of a valid approximation for the Lipschitz
constant of the set S(x) that is reasonably tight. In the following, we specialize the approach
to caseswhere knowledge of the Lipschitz constant is not explicitly required. Since it involves
derivatives of the coupling equality constraints, we make the following assumption for the
remainder of this section:

Assumption 6 The coupling equality constraints heq are Lipschitz continuously differen-
tiable on X × Ȳ with respect to their second argument.

4.1 Specialization to Linear coupling equality constraints by Euclidean projection

In certain situations, we might have a way to directly express our preference for choos-
ing a nearby solution to the coupling equality constraints directly by using the Euclidean
projection to the solution set S(x). Assume that we can, for a given upper-level point xd ,
easily compute one of the closest lower-level feasible points y to a given discretization point
yd in the Euclidean norm. If such a projection is available, we can solve the problem by
choosing T (x, xd , yd) = argmin

y∈S(x)

‖ y − yd‖22 since properties P.1 and P.2 hold trivially, and

property P.3 holds under Assumption 3 or if the Jacobian of the coupling equality constraints
D2heq(xd , yd) has full rank [31]. In the following, we discuss how to use the Euclidean
projection for the particular case of linear coupling equality constraints, i.e.,

heq(x, y) := A(x) y − b(x) = 0 . (16)

The mapping to the closest solution of problem (16) to the previous solution yd in the
Euclidean norm is given by

min
wd∈Rny

1

2
‖wd − yd‖22

s.t. A(x)wd = b(x) .

(17)

This problem can be embedded using its KKT conditions

I(wd − yd) + A(x)T λ = 0

A(x)wd = b(x)
(18)
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which only constitutes linear equality constraints without any equilibrium constraints. If the
matrix A(x) has full rank for all x ∈ X , our lower-bounding problem for this case can be
stated as

min
x∈X ,wd∈Rny ,λd∈Rneq ,d∈D

f (x)

s.t. I(wd − yd) + A(x)T λd = 0, ∀d ∈ D
A(x)wd = b(x), ∀d ∈ D
G(x,wd) � 0, ∀d ∈ D .

(LBP-lin)

Remark 1 This formulation is especially efficient in the case where the linear coupling equal-
ity constraints take on the form Ay = b(x), meaning that the coefficients of the coupling
equality constraint are constant. In this case, we only introduce linear equality constraints.

Remark 2 Note thatwe cannot constrain the copyof the lower-level variableswd , d ∈ D to the
lower-level host-set Ȳ in problem (LBP-lin). When numerically solving problem (LBP-lin)
with solvers requiring bounded domains, one needs to be careful that bounds on wd and λ

are chosen without causing an unwanted restriction.

Note that this corresponds to applying the approach of [17] to the problem

min
x∈X f (x)

s.t. G(x,w) � 0, ∀(w,λ, y) ∈ Y(x)
(19)

with

Y(x) = {(w, y,λ) ∈ Rny × Ȳ × Rm | I(wd − yd) + A(x)T λd = 0, A(x)wd = b(x)}
wherew and λ are considered as the dependent variables. As a result, the algorithm presented
in [17] and implemented as RRHS in our framework for discretization-based hierarchical
optimization libDIPS [32] can be applied. The algorithm uses the steps in Algorithm 1 to
find a lower bound but also introduces an upper-bounding procedure.

Alternatively, if thematrix A is constant andhas full rank, a decomposition of y into a linear
combination of dependent and independent variables is possible using a QR decomposition
or a (pivoted) reduced row echelon form. Thus, it is possible to apply the approaches from
Section 2.2 directly in this case. This is not necessarily true if the matrix A depends on the
upper-level variables x. Even if A(x) has full rank, an iterative re-assignment of entries of y
to dependent and independent variables can be necessary. The following example shows that
there are indeed such cases where the approach from [17] is not applicable, but the introduced
projection is.

Example 5 Consider the lower-level problem

max
y∈[−5,5]2

g(x, y)

s.t. heq(x, y) = max{0, x + 1}y1 + max{0, 1 − x}y2 − 1 = 0
(LLP)

Where coupling equality constraints might also be written as

heq(x, y) =

⎧
⎪⎨

⎪⎩

(1 − x)y2 − 1 for x < −1

(1 + x)y1 − 1 for x > 1

(1 + x)y1 + (1 − x)y2 else .
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The resulting matrix

A(x) = [max{0, x + 1},max{0, 1 − x}]
has full rank for any x. Since for x � 1 it has the form

A(x) = [x + 1, 0]
and for x � −1 the form

A(x) = [0, 1 − x] ,
no constant partition of lower-level variables will be valid.

As mentioned in Section 4.1, we need Assumption 3 (which is implied by full rank of the
matrix A) for the projection to fulfill property P.3. We want to motivate this assumption for
linear coupling equality constraints: Assume that the functions A(x) and b(x) are locally
Lipschitz continuous on X . Consider any iterate x̂, where we have obtained a solution to
the lower level. Since the lower-level problem was not infeasible for that iterate x̂, we can
in general assume that A(x̂) had full rank (otherwise b(x̂) is chosen very precisely, this is
unlikely enough to declare this a degenerate case). Then, the full rank assumption will hold
locally (due to the lower semi-continuity of the rank).

4.2 Specialization with error bound from an extension of the Kantorovich theorem

Assume that we can obtain a so-called error bound, i.e., we find c1 and c2 so that we can
guarantee: if ‖heq(x, y)‖ � c1 then there exists a solution y∗ around yi with ‖ yi − y∗‖ �
‖heq(x, y)‖c2. Previously, we used the relation

‖w − yd‖ � Lx‖x − xd‖.
However, we can also use

‖w − yd‖ � c2‖heq(x, yd)‖.
The new relation is easily integrated into the lower-bounding problem problem (LBP-eq) as

T (x, xd , yd) =
{
w ∈ Y | ‖ yd − w‖ � c2‖h(x, yd)‖

}

and
UT (xd , yd) =

{
x ∈ Rnx | ‖heq(x, yd)‖ � c1

}
.

It may be easier to obtain the parameters c1 and c2 than L , assuming that the coupling
equality constraints heq are continuously differentiable and that their Jacobian has full rank
at (xd , yd). We discuss how an existence theorem for solutions to nonlinear equations can
be used in the described manner.

4.2.1 Obtaining the parameters

For square systems, a possible way to generate such error bounds and thus obtain the parame-
tersmentioned in the last section is by theKantorovich theorem (see, e.g., [33, Theorem 2.1]).
In [34], the authors used a similar idea in the context of robust robotics. An extension to the
Kantorovich theorem to the underdetermined case is given in [35] but involves pseudoin-
verses. The similar result given in [36, 37] is used in the following because it is easier to
implement within a formulation suitable for deterministic global optimization.
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Theorem 2 [36] Define f : Rn → Rm as f : y �→ heq(x, y) for fixed, but arbitrary x.
Assume f ( y) is differentiable in the ball Bρ( y0) and Df ( y) satisfies the following Lipschitz
condition in Bρ( y0):

‖Df ( y1) − Df ( y2)‖ ≤ K ‖ y1 − y2‖ , ∀ y1, y2 ∈ Bρ( y0).

Let
∥∥∥Df ( y0)T ζ

∥∥∥∗ ≥ μ0‖ζ‖∗, ∀ζ ∈ Rm (20)

hold for someμ0 > 0 where ‖c‖∗ := sup
b:‖b‖=1

cT b is the dual norm. Denote r∗ = min{ρ,
μ0
2K }

and μ∗ = μ0 − Kr∗. If

‖ f ( y0)‖ < μ∗r∗ (21)

then there exists a solution y∗ with f ( y∗) = 0, and ‖ y∗ − y0‖ ≤ ‖ f ( y0)‖
μ∗ .

Proof The theorem is a restatement of [36, Theorem 2] using the estimates μ∗ and r∗ in [36,
Collary 3]. ��

Note how μ∗r∗ and 1
μ∗ play the role of c1 and c2, respectively. For their computation, we

need three quantities: the Lipschitz constant K ,μ0 (which in the Euclidean norm corresponds
to the smallest singular value of D2heq ) and the minimal radius ρ. The radius ρ can easily
be calculated as the distance of yd to the boundary of Ȳ (which is at least τ according to
assumption Assumption 5). Assuming the coupling equality constraints are twice continu-
ously differentiable in their second argument, K can be estimated [38] by any lower bound
to the optimization problem

min
x∈X , y∈Ȳ

− ‖D2,2heq(x, y)‖V (22)

where ‖ ·‖V is any norm compatible with the operator norm ‖ ·‖which is applied to matrices
in Theorem 2.

For μ0, we suggest two alternatives: Firstly, we can compute a value that is valid for all
possible pairs of upper- and resulting feasible lower-level variables with

μ0 = min
x∈X , y∈Y(x),s∈Rnheq

‖D2heq(x, y)‖∗

s.t. ‖s‖∗ = 1 .

(23)

Secondly, we can compute μ0 as a function of the discretization point yd and the upper-level
variables x by embedding

μd
0(x) = min

μ0�0,s∈Rnheq
μ0 (24a)

s.t. ‖s‖∗ = 1 (24b)

‖D2heq(x, yd)s‖∗ = μ0 (24c)

into the lower-bounding optimization problem. Fortunately, we can avoid forming a bilevel
optimization problem. This is because we will use μ0(x)d in the constraint

‖wd − yd‖ � ‖heq(x, yd)‖
μ∗(μ0(x)d)

∨ ‖heq(x, yd)‖ � μ∗(μ0(x)d)r∗(μ0(x)d) (25)
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which is less restrictive for smaller values ofμ0. We can observe that bothμ∗ and r∗ increase
as a function of μ0 and can thus embed problem (24b) and problem (24c) instead of problem
(24). This is formalized in Lemma 4.

The following proposition states that problem (25) can be used in Algorithm 1 according
to Theorem 1.

Proposition 1 Denote with μ̃d
0(x) a valid value of μ0 in Theorem 2 for the upper-level point

x and the discretization point yd , obtained either as μ̃d
0(x) := μd

0(x) according to problem
(24) or as μ̃d

0(x) := μ0 according to problem (23). Assume that the full rank assumption holds

for each infeasible upper-level point xd ∈ X and corresponding feasible lower-level point
yd ∈ Y(x). Further, assume that heq is Lipschitz continuously differentiable in its second
argument. Then the lower bounding procedure in Algorithm 1 finitely proves the problem to
be infeasible, returns a global solution or each accumulation point of the sequence of iterates{
xi

}
i∈N converges to a global solution of problem (GSIP-eq) if

T (x, xd , yd) := ‖wd − yd‖ � ‖heq(x, yd)‖
μ∗(μd

0(x))

with
UT (xd , yd) :=

{
x ∈ Rnx | ‖heq(x, yd)‖ � μ∗(μ̃d

0(x))r∗(μ̃d
0(x))

}

is used in Algorithm 1.

Proof We show that T fulfills properties P.1 through P.3 and thus Algorithm 1 converges
according to Theorem 1. Note that K is bounded by assumption, and further that assuming
full rank of the Jacobian D2heq(x, y) for x ∈ X , y ∈ Y(x) implies μ̃d

0(x) � μ0 > 0. From
μ∗(μ0) � μ0

2 and ρ � τ > 0 one can in turn derive that there exist with μ∗ > 0 and r∗ > 0

with μ∗(μ̃d
0(x)) � μ∗ and r∗(μ̃d

0(x)) � r∗.
Concerning T , property P.1 holds, since as discussed above μ∗(μ̃d

0(x)) � μ∗ > 0 and

heq(xd , yd) = 0. Property P.2 holds according to Theorem 2. Finally, property P.3 follows
from uniform continuity of heq on X × Ȳ as follows: Property P.3 requires the existence of
δT > 0 such that ‖x − xd‖ � δT and w ∈ T (x, xd , yd) imply ‖w − yd‖ � δw for arbitrary
small δw > 0. Uniform continuity of heq on X × Ȳ guarantees the existence of δT > 0 with

[

‖x − xd‖ � δT �⇒ ‖heq(x, yd) − �������0
heq(xd , yd) ‖ � δh

]

,∀xd ∈ X .

For w ∈ T (x, xd , yd) and ‖x − xd‖ � δT , we note that

‖w − yd‖ � ‖heq(x, yd)‖
μ∗(μd

0(x))
� ‖heq(x, yd)‖

μ∗ � δh

μ∗ .

Thus, property P.3 follows from choosing δw = δh
μ∗ . The condition UT (xd , yd) ⊇ BδT (xd)

for some constant δT > 0 follows analogously from heq(xd , yd) = 0 and uniform continuity
of heq on X × Ȳ . ��

Theorem 2 directly handles underdetermined systems of equations. Many theoretical
results only cover the square case. In the next section, we briefly discuss a possible approach
for using these results instead of Theorem 2, as well as disadvantages compared to using
Theorem 2.
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4.2.2 Avoiding an underdetermined equation system

Instead of using Theorem 2, we can extend the system of equations heq(x, y) = 0 to apply
theoretical results for square systems: Taking inspiration from the linear case, we form the
extended system

F(x,w,λ) :=
[
I(w − yd) + A(x)T λ

heq(x,w)

]
= 0 (26)

where A(x) = D2heq(x, yd)T . This is identical to the KKT system of the Euclidean pro-
jection to the discretization point yd for fixed x, except that the Jacobian of the coupling
equality constraints D2heq is evaluated at the discretization point yd instead of w. A related
idea is used in [39], where the Jacobian is used to find a coordinate transformation to enable
the use of a theorem for square systems. For brevity, denote the extended lower-level variable
vector with zT := [wT ,λT ], the extended discretization point with z0T := [ yd,T , 0T ] and
F̃(x, z) := F(x,w,λ). Computing the Jacobian with respect to the extended lower-level
variables at z0 we get:

D2 F̃(x, z0) =
[

I D2heq(x, yd)T

D2heq(x, yd) 0

]
. (27)

If we assume full rank of D2heq(x, yd), this matrix has also full rank for all x ∈ X . The
extension of the implicit-function theorem in [40, Theorem 3.1] validates Assumption 3 with
explicit expressions for Lx̂ and δx̂ and can theoretically be used to compute the constants
from Assumption 3.

Alternatively, results for quantitative results on the inverse and implicit function theorems
in [41], results from homotopy continuation [25, Prop. 6.2] or variants of the Newton-
Kantorovich theoremas in [33, Theorem2.1] can be applied to the extended system.However,
an implementation in the Algorithm 1 faces the following difficulties: Firstly, one has to con-
tend with additional variables to represent λ. Secondly, we expect increased conservatism in
these results, making a smaller neighborhood of xd infeasible in the lower-bounding prob-
lem. This expectation is based on estimations made during the derivation of such results,
which are often based on matrix norms and use a single radius for the function inputs z while
the scaling of λ and w could differ significantly.

Instead of using the extended system, one could also eliminatew and consider the function
F̂(x,λ) = heq(x, yd +A(x)T λ). However, in this case, computing ρ such that yd +A(x)T λ

remains in Ȳ is difficult without again introducing large conservatism.We believe that further
research could overcome these challenges and use the extended system to utilize results for
the more intensively studied square case, but we do not pursue these ideas further in this
manuscript.

5 Numerical implementation and examples

In this section, we discuss challenges in the numerical implementation and present numerical
experiments on small-scale problems for the nonlinear case and an application to robust
optimal power flow, for which we apply the approach presented in Section 4.1 for the case
of linear coupling equations.
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5.1 Implementation

There are several challenges in implementing Algorithm 1 with the different specializations.
We highlight the most important considerations:

Firstly, we formulated many subproblems that contain logical disjunctions. Especially
with nonlinear terms, most global solvers cannot handle such disjunctions directly. In our
experiments, we formulate them using the big-M reformulation, i.e., using binary variables
(see [42] for details). Other reformulations or methods that directly handle the disjunctions
could be used [43]. However, in the tests conducted in [44], for nonconvex problems, employ-
ing a big-M formulation alongside a general MINLP solver proved to be competitive with
more sophisticatedmethods. Similarly, we use binary variables v ∈ {0, 1}nineq+1 to formulate

G(x, y) � 0

as

(1 − vnineq+1)g(x, y) −
nineq∑

i=1

vi h
ineq
i (x, y) � 0

nineq+1∑

i=1

vi = 1

except in Section 5.3, where we use a big-M formulation to avoid introducing nonconvex
bilinear terms.

Secondly, it was necessary to tighten the feasibility and integrality tolerances of the sub-
solvers to avoid cycling in later iterations. One reason for needing tight feasibility tolerances
is also present in other discretization-based algorithms: in the limit, the constraint viola-
tion max

y∈Y (x)
G(x, y) tends to zero as the iterates for x approach the solution. Additionally,

certain constraints used in the discussed formulations tend to be sensitive to tolerances.
For example, using the Euclidean norm in problem (25), we have a constraint of the form
‖heq(x, yd)‖2 � c̃ where c̃ > 0 is usually small. For this reason, we do not use the refor-
mulation to ‖heq(x, yd)‖22 � c̃2, which is usually preferred because it avoids the use of a
square root, because it would necessitate even tighter tolerances.

5.2 Comparing approaches for nonlinear coupling equality constraints

Algorithm 1 employs problem (LBP-eq), which is parametric in T and UT . In this section,
we compare three approaches suitable for nonlinear coupling equality constraints resulting
from different choices for T . Two use the parametrization introduced in Section 4.2, while
the other assumes knowledge of the Lipschitz constant and was introduced in Section 3. In
the following, we differentiate between:

Lipschitz-based: using T (x, xd , yd) = BL‖x−xd‖( yd) with known Lipschitz constant L;
Polyak-fixed: the approach from Section 4.2 with a fixed μ0 computed via problem

(23);
Polyak-variable: the approach from Section 4.2 with embedding problem (24) for the

computation of μ0.

We outline the details choices in the concrete testing of the proposed approaches for
nonlinear coupling equality constraints:
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We use the Euclidean norm throughout. For the latter two approaches, we calculate K by
solving the optimization problem problem (22) with a relative optimality tolerance of 0.01

where ‖A‖V = ‖A‖2 :=
√∑m

i=1 ‖Ai ||22 for A ∈ Rm ×Rn ×Rn which is compatible with the
Euclidean norm [45]. Therein, we denote with Ai the i-th n × n matrix component of A. An
alternative would be to use interval arithmetic and bound the 2-norm by ‖Ai‖2 � ‖Ai‖F ,
but the expected overestimation would likely be detrimental to the approaches relying on
bounds on K .

For termination, we selected the criteria as follows: We test the algorithm as stated in
Algorithm 1 for each approach, but introduce a feasibility tolerance of 10−4 so that the
algorithm terminates with status TOL in iteration i when Gi < 10−4. We also terminate
with TIME if the time limit of 30 minutes is exceeded, with ITER after 500 iterations,
and with STUCK if ‖xi − xi−1‖ < 10−6 and |LBDi − LBDi−1| � 10−6. The latter signals
insufficient progress or looping, which can occur, for example, if Assumption 3 is not satisfied
or because the subsolver only enforces the constraints within a given numerical tolerance.

We also test the effect of reducing the number of discretization points by adding LBD −
f (x) � 0 to problem (LBP-eq) and filtering the discretization point according to D ←
{i ∈ D | f i + ε f ilter � LBD} with ε f ilter > 0. This filtering does not interfere with the
convergence guarantees of Theorem 1. Intuitively, this is clear since similarly to the behavior
of G in Theorem 1, the constraint LBD− f (xi ) � ε f ilter > 0 cuts of a neighborhood for all
discretization points discarded by this filter. Still, we prove this more rigorously in Theorem
1.

For the tests in this section, we implemented the algorithm in Julia 1.10 utilizing JuMP
[46] to formulate the optimization problems.We chose this approach for the prototype imple-
mentation instead of our library for discretization problems libDIPS [32], primarily because
it allows us to leverage Symbolics.jl [47] for flexible higher-order symbolic differentiation
and symbolic manipulation. This capability enables the automatic generation of expressions
needed in problem (23) and problem (24). The subproblems are solved globally using Gurobi
11. In order to access the nonlinear capabilities of Gurobi 11, which at the time of writing are
not directly available inside JuMP, we make use of the JuMP interface to GAMS: subprob-
lems are passed from JuMP to GAMS 47, which then calls Gurobi 11 to solve the problems.
An absolute optimality tolerance of 10−6, a relative optimality tolerance of 10−5, an integer
tolerance of 10−9 and a feasibility tolerance of 10−8 and an aggressive filter tolerance ε f ilter

of 10−5 are used. The tests are run using an Intel i5-9500 CPU and 16GB of RAM.
We constructed several small test problems to compare the approaches. Details can be

found in the appendix under Examples 6 to 11. For Examples 6 to 9 Assumption 3 holds. We
also test the behavior of the algorithm under the failure of this assumption with Examples 10
and 11.

The results for the examples fulfilling Assumption 3 are presented in Table 1. Even for
these small test problems, each approach runs into the time limit for at least one test problem
when no filtering is used. This can be attributed to the fact that additional constraints and
variables are added for each discretization point, which makes the subproblems challenging
to solve globally.

As intended, the filtering reduces the computation times. One should note that the filtering
is especially effective in the test problems used. This is because it turns out that for these
problems (in the absence of numerical tolerances) frequently only the most recent discretiza-
tion point is binding in the sense that discarding every discretization point except the latest
would mostly yield the same solution to the subproblems. Even though the proposed filtering
will not be as effective for general problems, it allows us to estimate how many iterations
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Table 1 Results for the test problems fulfilling Assumption 3. TIME and ITER denote abortion due to time
and iteration limit, respectively. TOL denotes successful termination within tolerance, while STUCK signals
looping or insufficient progress. Note that in Example 8 the full rank assumption is violated. †: stuck, but
already close to the solution

Ex. 6 Ex. 7 Ex. 8 Ex. 9

Lipschitz-based time 14s 1800s 10s 1s

iter 2 9 39 8

status TOL TIME STUCK† TOL

Lipschitz-based + filter time 1s 2s 1s 1s

iter 2 19 9 7

status TOL TOL TOL TOL

Polyak-fixed time 1800s 6s 1s 1800s

iter 117 6 0 74

status TIME TOL STUCK TIME

Polyak-fixed + filter time 20s 1s 1s 26s

iter 283 6 0 500

status TOL TOL STUCK ITER

Polyak-variable time 1800s 6s 1s 37s

iter 5 5 2 60

status TIME STUCK† STUCK TOL

Polyak-variable + filter time 5s 1s 1s 3s

iter 15 5 2 60

status TOL TOL STUCK TOL

the different approaches would have needed, had we not set any time limit. Except for the
Lipschitz-based approach in Example 8, this estimation seems to hold in cases where the time
limit does not take effect. Examining the number of necessary iterations is interesting for
two reasons: Firstly, if an approach is efficient in that only a few iterations are required, but
the subproblems are hard to solve, it could be interesting to try to formulate the subproblem
in a way that allows for a faster solution. Secondly, it indicates how sensitive our results
are regarding the run-time limit. Most notably, the time limit is reached for Polyak-fixed for
Example 6 and Example 9, but still more than double the iterations would have been needed.

The results in these two problems also illustrate the trade-off between the different
approaches of computing μ0 in Polyak-fixed and Polyak-variable. If μ0 is fixed, the sub-
problems tend to be solved faster. However, in these two problems, the adaptive value μ0(x)

is small in certain regions of the upper-level domainX . Thus, using a single value forμ0 that
is valid for the whole domain X makes many iterations necessary. This can also be seen in
Example 9, where the computation of μ0 = 0 directly reveals that the full rank assumption
is violated, which is why Polyak-fixed directly terminates.

The Lipschitz-based approaches require knowledge of the constant L . In exchange, it is
the only approach capable of solving Example 8. Except for Example 7, which is linear and
thus allows K = 10−8, it is also the fastest approach.

We also test the behavior of the approaches on two examples that violate Assumption 3.
The results for Examples 10 and 11 are shown in Table 2.

Asmentioned, Polyak-fixeddetects the violation of the full rank assumption and terminates
directly. Since Assumption 3 is violated, there exists no valid value for the Lipschitz constant
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Table 2 Result for the test problems not fulfilling Assumption 3. TIME and ITER denote abortion due to time
and iteration limit, respectively. TOL denotes successful termination within tolerance, while STUCK signals
looping or insufficient progress. †: stuck, but already close to the solution

Ex. 10 Ex. 11

Lipschitz-based time 1800s 6s

iter 29 35

status TIME TOL

Lipschitz-based + filter time 4s 2s

iter 36 35

status TOL TOL

Polyak-fixed time 1s 1s

iter 0 0

status STUCK STUCK

Polyak-fixed + filter time 1s 1s

iter 0 0

status STUCK STUCK

Polyak-variable time 1800s 128s

iter 41 156

status TIME† STUCK

Polyak-variable + filter time 8s 6s

iter 58 110

status TOL STUCK

L . When using a large value of L = 100 heuristically with the Lipschitz-based approach, the
algorithm converges to the correct solution.However, we cannot guarantee that the iterates are
valid relaxations, so we cannot guarantee convergence to the global solution or any feasible
point in general.

In contrast to Example 8, in Examples 10 and 11 the full rank assumption is violated only
at isolated upper-level points. We conjecture that Polyak-variable will converge to a solution
or one of these isolated points. Indeed, in both problems, the iterates for the Polyak-variable
approach one of these isolated points but the rate of change between iterations diminishes
until it falls below our numerical tolerance or the time limit is reached. For Example 10, the
solution is one of these points, which is why Polyak-variable terminates close to it.

The experiments in this section considered toy problems with nonlinear coupling con-
straints. In the next section, we consider an application with linear coupling equality
constraints.

5.3 Robustness of relaxed power flow - an application with linear coupling equality
constraints

In Section 4.1, we discussed a specialization for linear coupling equality constraints. In this
section, we apply this specialization to a power-flow problem, focusing on robustness in a
power grid under load uncertainty. The robustness of power grids under uncertainty is an
important topic with many different formulations discussed in the literature (see [48] for
an overview). The considered problem exemplifies a scenario where coupling equality con-
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straints are essential for a practical application and decomposing dependent and independent
variables is not straightforward.

A power network consists of buses, connected by lines, as well as generators and loads
attached to buses. Given an initial set-point for the generators, called a dispatch point, we are
interested in the robustness of the grid to uncertainty in the loads, i.e., howmuch the loads can
change from a forecast so that the power network can operate from this dispatch point if the
loads change. We formulate this as a generalized semi-infinite optimization problem using
the power flow formulation based on the so-called SOCP power flow, which is a relaxation to
AC power flow.We give only a high-level overview of the problem, more details are provided
in Section A.2.

We consider the following optimization problem: Let G be the set of generators,N be the
set of buses, and E be the set of lines in the power grid. Consider fixed values for the generator
set points Pg ∈ R|G| and Qg ∈ R|G|. Further, let Pd,nom ∈ R|N | and Qd,nom ∈ R|N | be
the nominal values for the real and reactive loads at buses, n ∈ N , respectively. We search
for a minimal change of the real and reactive loads x = [Pd ; Qd ] ∈ R2|N | from these
nominal values such that no safe grid state y = [v; c; s;�P;�Q] ∈ R|N |+2|E|+2 exits,
where v, c and s represent the complex voltages of the network and where �P and �Q
represent the overall deficit in real and reactive power. Concretely, the objective function is
given by f (x) = 1

2|N |
∑

n∈N (Pd
n − Pd,nom

n )2 + (Qd
n − Qd,nom

n )2. Meanwhile, the coupling
equality constraints heq are linear and have the form of an underdetermined system of linear
equations

Ay = x (28)

(see problem (29), problem (30)) where A ∈ R2|N |×|N |+2|E|+2 is a sparse matrix, with
size and sparsity pattern depending on the grid instance. Thus, a general valid decompo-
sition into dependent and independent lower-level variables is unknown as it depends on
the concrete problem parameters. The coupling inequality constraints only depend on the
lower-level variables y, i.e., hineq(x, y) = q( y), and are linear or quadratic and concave
(see Eqs. (32) and (35) to (34)). The semi-infinite constraint is linear and only depends on the
lower-level variables. Overall, the problem formulation leads to a GSIP with linear coupling
equality constraints and nonconvex lower level. When formulating disjunctions using big-M
as explained in Section 5, the discretized upper-level problem is a MIQCQP with convex
continuous relaxation.

We solve the resulting GSIP using the specialization for linear coupling equality con-
straints by using problem (LBP-lin) as the lower-bounding problem. In addition to the
lower bounding procedure detailed in Algorithm 1, we also search for an upper bound by
using the approach of restricting the right-hand side [23], i.e., replacing G(x, y) � 0 with
G(x, y) � −εr in problem (LBP-lin), with an adaptively reduced restriction εr . While we
have not considered upper-bounding explicitly in this work, as discussed in Section 4.1 the
analysis of [17] is applicable in this case.

In contrast to the experiments inSection5.2,wherewe required symbolic tools to formulate
some of the subproblems, we implemented Algorithm 1 with the upper-bounding procedure
using the existing solverRRHS in our software libDIPS [32] by specifying problem (LBP-lin)
as the lower-bounding program instead of the usual problem (SIP-LBP).

All tests are run on an Intel Xeon 8468 Sapphire CPU with 4GB of RAM. We use the
default parameters of initial restriction εr ,0 = 0.1 and reduction factor εred = 10, as well
as absolute and relative optimality tolerance of 0.1 and 10−4, respectively. To solve the
subproblems, we use Gurobi 11.0.0 using a feasibility tolerance of 10−7, a dual feasibility
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tolerance of 10−7, an integer tolerance of 10−7, and the NumericFocus and IntegralityFocus
parameters set to their highest values of 3 and 1, respectively. In the upper-level problems, we
use absolute and relative optimality tolerances of 10−4 and set the MIPFocus parameter to
3. In the lower level problem, we use absolute and relative optimality tolerances of 10−5 and
set the Presolve parameter to 0. The latter was necessary to avoid numerical problems caused
by presolve. We scale the objective function of both the upper and lower-level problems by
105. While this should be equivalent to an unscaled version with correspondingly tighter
optimality tolerances, our experiments showed significantly increased run times without the
scaling due to the algorithm requiring many more iterations. We speculate that this may be
related to the unscaled objective function values being close to 0, causing numerical issues.

We apply the algorithm to the 5-bus power network instance “case5” established as a test
case by MATPOWER [49, 50]. Even though the problem formulation leads to MIQCQPs
with convex continuous relaxation, only small instances could be reliably solved within a
reasonable time. We computed two different dispatch points Pg and Qg that are feasible
for 13 samples for the loads Pd and Qd . For the first one (dispatch point 1), we sample an
uncertainty of 5% around the nominal load and 10% uncertainty for the second one (dispatch
point 2). Ten of the samples are random. Two samples are obtained by setting all loads to
their upper and lower bounds, respectively. The last sample is the nominal load, as given
in the case file. We solve the GSIP resulting from two distinct dispatch points for different
maximum uncertainty levels, given as percentages of the nominal load.

Among multiple runs, we observed small deviations (up to 5 seconds) for some instances,
even though the iterations are identical. We therefore solve each instance five times to obtain
more representative CPU times. The resulting iteration counts and average CPU times are
shown in Table 3. We observe that instances involving dispatch point 1 generally required
higher computational effort to solve than those involving dispatch point 2. Overall, for non-
trivial instances, dispatch point 1 exhibits stronger variability in computational effort. In
particular, the closer to the sampling design of 5% an instance is, the more effort is required
to solve it. We observe a correlation between CPU times and iteration counts, though the
differences between instances are more pronounced regarding CPU times. This indicates the
expected result that subproblems in later iterations become more challenging to solve, due
to their increased problem size.

For both dispatch points, the instances corresponding to uncertainty ranges inside the
sampled uncertainty ranges used to generate the dispatch points terminated with infeasibility,
indicating that these dispatch points are indeed robust (under the relaxed power flow model)
against the load variations theywere designed for. In all other instances, the returned objective
values indicate that loads with greater variation can cause grid insecurities, even under the
relaxed power flow model. The upper and lower bounds of all instances are shown in Table
3. As expected, dispatch point 2 can withstand greater load variations than dispatch point 1
without leaving a safe grid state. We observe that increasing the uncertainty set decreases the
objective value, i.e., as the search space is expanded, points closer to the nominal demand
(in the 2-norm) are added to the feasible region. This occurs until the uncertainty set is larger
than the dispatch point was designed for by around 1% of the nominal load. Beyond this,
increasing the uncertainty set further does not decrease the objective value.

We conclude that the proposed algorithm can be utilized to check the robustness of a
dispatch point. A feasible point provides a load scenario that leads to a constraint violation in
the grid.On the other hand, because the usedmodel equations represent a relaxation compared
to the underlying physical constraints, the infeasibility of the problem is a necessary condition
for the robustness of the physical system. The results show that for this small instance, the
heuristic approach of choosing the dispatch point based on relatively few samples leads to
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Table 3 Upper and lower bounds on the objective value for all studied instances. Uncertainty range is the
maximal deviation from the nominal load in % of nominal load. Values for the objective are unscaled

Dispatch Point Uncertainty Range LBD UBD Iter Time

1 5.0% INF INF 27 51s

5.2% 84.1MW2 84.2MW2 26 45s

6.0% 83.3MW2 83.3MW2 22 30s

10.0% 83.3MW2 83.3MW2 22 30s

2 5.0% INF INF 5 1s

10.0% INF INF 21 31s

10.2% 338.2MW2 338.2MW2 22 31s

11.0% 333.4MW2 333.4MW2 22 32s

15.0% 333.3MW2 333.4MW2 22 33s

a dispatch point that passes this additional check for the amount of uncertainty considered
during sampling. It would be interesting to investigate whether this holds for larger grid
instances, or if this would require many more samples due to the increased dimensionality
of the uncertainty space. Since the presented algorithm does not require a decomposition
into dependent and independent lower-level variables, it can, in theory, be applied to other
grid instances by changing the instance data without having to derive such a decomposition.
However,while the presented instance is solved robustlywithin a reasonable time, it is already
challenging numerically, requiring tightened tolerances. Preliminary tests on larger instances
revealed that in addition to the effort to solve the non-convex lower level, the MIQCQP in the
upper level cannot be solved in a reasonable time in later iterations. However, the problem
formulation can potentially be changed to improve performance, for example, by considering
power limits only on a critical subset of lines.

6 Conclusion

We extended the applicability of discretization-based methods for generalized semi-infinite
programmingwith coupling equality constraints. Our approach only requires local stability of
the lower-levels solution characterized by the existence of a solution and Lipschitz behavior
of the solution set instead of existence and uniqueness. It can be applied to underdetermined
systems of coupling equality constraints without declaring appropriate entries of the lower-
level variable y as dependent variables. We also show that a constant decomposition into
dependent and independent variables can be impossible.

For most cases, we only discuss lower-bounding. Additionally, in the linear case one can
transfer the results from [17]. Further, we conjecture that one can directly adapt existing
strategies for generating upper bounds in adaptive discretization algorithms, e.g., [20], but
this remains to be formally shown. Similarly, we only discussed continuous variables in
the upper and lower levels, but handling discrete variables is well-established for adaptive
discretization algorithms, and we conjecture that it does not cause any complications for the
proposed approach.

We do not assume the uniqueness of the solution to the coupling equality constraints. This
allows us to solve problems that do not satisfy this condition. However, the resulting subprob-
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lems are challenging. Despite this, we demonstrate that the algorithms can be implemented
in practice and discuss implementation issues and details.

The challenging nature of the employed subproblems shows in the computation times in
the numerical experiments. In the case of linear coupling equality constraints, we succeeded
in applying the specialization of the algorithm to linear coupling equality constraints to a
power-flow problem, determining robustness in a power grid under load uncertainty. While
the considered problem formulation is practically relevant, the considered instance size is
orders of magnitude smaller than that of realistic problem instances. With current solvers,
applying the algorithm to these instances seems intractable. In the case of nonlinear coupling
constraints, even for the small test problems used, none of the tested approaches can solve
all within 30min when no filtering is used. Especially with more discretization points, the
subproblems take a long time to solve. In other words, we are quite heavily limited by the
current status of global deterministic subsolvers used to solve the subproblems, both in the
nonlinear examples and for the application with linear coupling constraints. We see four
possible avenues beyond waiting for subsolver or hardware improvements.

Firstly, other existence proofs could be used to construct T with the required properties
and lead to a numerically more favorable formulation of the subproblems or be stronger
in the sense that fewer iterations are required. In the square case, the existence theorem of
Borsuk is quite strong and might be able to be implemented in the existing framework [33].
Similarly, an adaptation of [25, Proposition 6.2.] to the nonsquare case would give a way to
calculate L numerically. Further, we see potential in existence theorems that give component-
wise bounds instead of using a single vector norm [51]. While existence theorems for the
nonsquare case are less deeply studied and using existence theorems for the square case
comes with drawbacks, as discussed, further research could compare different choices and
combinations of existence theorems.

Secondly, we see a promise in investigating the required number of discretization points,
for example, by dropping some discretization points in a more sophisticated extension of
our simple filtering approach. This can benefit discretization algorithms in general, but par-
ticularly in our current context, since each discretization point adds variables both for the
lower-level variables and to formulate the logical disjunctions. Another way to avoid many
discretization points would be to generate better cuts in terms of the inequality constraints.
In our approach, we had to adjust the discretization points locally to handle the equality con-
straints. Transferring this idea of adjusting the discretization points in response to changes
in upper-level variables to the coupling inequality constraints could reduce the number of
iterations and thus the number of considered discretization points. A further extension of this
idea could look at enforcing the equality constraints of the KKT conditions of the lower-level
problem in this manner.

Thirdly, instead of reformulating the disjunctions so that they can be solved with estab-
lished mixed-integer solvers, further research could investigate if solution approaches for
solving the specific occurring disjunctions, similar to the work in [21], can improve effi-
ciency.

Lastly, beyond the presented framework, one could also find a way to avoid introducing
explicit copies of the lower-level variables. Perhaps the work in [19] to find boxes with a
unique solution to the coupling equality constraint could be extended in this way.
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A Appendix

A.1 Test problems

Here we give the details of the small test problems used. The small size allows us to compute
a concrete value for L in the cases where Assumption 3 holds.

Example 6 In this example, the number of coupling equality constraints equals the number
of lower-level variables, but there are two solutions for the coupling equality constraints.

X =
{
x1 ∈ [0.01, 1.2] | x2 � 1

100

}

Ȳ = [−1.1, 1.1] × [−1.1, 1.1]
f (x) = −x1

g(x, y) = (y1 + y2 − 1)2 − 1

100
heq1 (x, y) = (y1 − x1)

2 + (y2 − x1)
2 − 1

heq2 (x, y) = y21 + y22 − 1

(Ex-1)

here L = 1 is valid for the Euclidean norm and x = (1.0) is the analytical solution.

Example 7 This example uses the structure of the lower-level problem Example 5:

X = [−2, 2]
Ȳ = [−1, 2] × [−1, 2]

f (x) = (x1 − 1

100
)2

g(x, y) = y1 − y2 − 1

heq(x, y) = max{0, 1 + x1}y1 + max{0, 1 − x1}y2 − 1

hineq1 (x, y) = y1 − 1

hineq2 (x, y) = y2 − 1

hineq3 (x, y) = −y1

hineq4 (x, y) = −y2

(Ex-2)

here L = 1 is valid for the Euclidean norm. We determined the solution graphically as
x ≈ (0.1117).
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Example 8 This problem results from reformulating Example 5 to fulfill assumptionAssump-
tion 5:

X = [−0.75, 0.75]
Ȳ = [−1.1, 1.1] × [−1.1, 1.1]

f (x) = −x1

g(x, y) = (y1 − x1)(1 + y2) + x1

heq(x, y) = (y1 − x1)(y2 − x1)

hineq1 (x, y) = y1 − 1

hineq2 (x, y) = y2 − 1

hineq3 (x, y) = −y1 − 1

hineq4 (x, y) = −y2 − 1

(Ex-3)

Here, L = 1 is optimal, and the analytical solution is x∗ = ( 12 (1 − √
5)) ≈ (−0.618).

Example 9 The coupling equality constraint in this example was used as a test case in [19]
to find a collection of boxes with unique solutions.

X = [0.25, 20]
Ȳ = [−6, 6]

f (x) = −x1

g(x, y) = (y1 − 0.9)

heq(x, y) = −y31 + x1y1

hineq1 (x, y) = y1 − 5

hineq2 (x, y) = −y1 − 5

(Ex-4)

It is easy to see that there are three different solutions of the coupling equality constraint with
respect to the lower-level variable for each upper-level variable in the host set. Concretely,
y1(x) = 0 ∨ y1(x) = ±√

x1. Here, L = 1 is optimal and the solution is x∗ = (0.81)

Example 10 This example is constructed using the coupling equality constraint fromExample
4:

X = [−0.2, 0.2]
Ȳ = [−2, 2]

f (x) = −x1

g(x, y) = (−y1 + 0.5)

heq(x, y) = (y1 + 0.75)(y1 + 0.6)(y1 − 0.3) − x1

(Ex-5)

In this example, no valid L exists (see Example 4). We will use this example to investigate
the behavior of the algorithms if the assumptions fail. We will use L = 100 heuristically.
The solution is approximately x∗ ≈ (−0.135).
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Example 11 This example is constructed similarly to Example 10, but with a slight modifi-
cation of the equality constraints.

X = [−0.2, 0.2]
Ȳ = [−2, 2]

f (x) = −x1

g(x, y) = (−y1 + 0.5)

heq(x, y) = (y1 + 0.75)(y1 + 0.6)(x1 − 0.3)(y1 − 0.9) − x1

(Ex-6)

Here, Assumption 3 is violated. We will use L = 100 heuristically. The solution is roughly
x∗ ≈ (−0.11).

A.2 Details on the power-flow problem

The considered problem deals with robustness in power grids under load uncertainty. It exem-
plifies a practical scenario where coupling equality constraints are essential and decomposing
dependent and independent variables is not straightforward.We summarize the required equa-
tions, but refer to [52, 53] for more details.

LetN , E , G, L be the sets of buses, lines, generators, and loads. Further, let n(e) andm(e)
denote originating and terminal bus for each line e ∈ E and conversely let e+(n) and e−(n)

denote the in- and outgoing edges from bus n ∈ N . Each bus n ∈ N has a (possibly empty)
set of attached generators g+(n). The state of the grid is represented by the state variables v, c
and s, where v represents the square of the node voltage V . Following the usual formulation
of optimal power flow, we consider that the grid state can be chosen optimistically from
consistent grid states. Consistent grid states are those that fulfill the following constraints:

Given values for real and reactive loads Pd and Qd , aswell as real and imaginary generator
set-points Pg and Qg , the real and imaginary power balance at each bus are given by

Pd
n +

∑

g∈g+(n)

Pg
n + αP

n �P

= Ĝnvn +
∑

e∈e−(n)

Gece + Bese +
∑

e∈e+(n)

Gece − Bese, ∀n ∈ N (29)

Qd
n +

∑

g∈g+(n)

Qg
n + αQ

n �Q

= Ĝnvn +
∑

e∈e−(n)

Gese − Bece +
∑

e∈e+(n)

Gese − Bece, ∀n ∈ N (30)

where the injections at the generators can be adjusted proportionally from the setpoints
according to the participation factors αP ,αQ with

∑
g∈G α

Q
g = ∑

g∈G αP
g = 1 based on the

overall deficit in real and imaginary power �P and �Q.
The state variables on each node are further interdependent. In SOCP power flow, the

originally trigonometric relationship between the state variables

c2e + s2e − vn(e)vm(e) = 0, ∀e ∈ E

⇐⇒ ||(ce, se, 1
2
(vn(e) − vm(e)))||2 − 1

2
(vn(e) + vm(e)) = 0, ∀e ∈ E

tan(θe) = se/ce, ∀e ∈ E

(31)
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is usually relaxed by changing the first equality to an inequality and discarding the second
[53, 54].

Here, we instead relax it to

c2e + s2e − (Vmin
n(e) V

min
m(e))

2 � 0, ∀e ∈ E (32a)

||(ce, se, 1
2
(vn(e) − vm(e)))||∞ − 1

2
(vn(e) + vm(e)) � 0, ∀e ∈ E (32b)

||(ce, se, 1
2
(vn(e) − vm(e)))||1 −

√
3

2
(vn(e) + vm(e)) � 0, ∀e ∈ E (32c)

− se + tan(−θmax )ce � 0, ∀e ∈ E (32d)

− tan(θmax )ce + se � 0, ∀e ∈ E (32e)

where we take θmax = π
4 and Vmin are lower-limits on the allowed voltage magnitude.

Note that the approximation of c2e + s2e − (Vmin
n(e) V

min
m(e))

2 � 0 in Eqs. (32b) and (32c) can be
refined further using the approach in [55]. This relaxation yields convex MIQCQP for the
upper-level problem. We note that an alternative approximation is used in [54], leading to a
convex lower-level problem.

We further add the valid constraints

1 − ce/
(
Vmin
n(e) V

min
m(e) cos(θmax )

)
� 0, ∀e ∈ E (33)

In addition to the constraints inEqs. (29), (30) and (32),whichmodel the physical behavior,
the problem also contains engineering constraints that should not be violated for a stable
operation of the grid. Here, we consider the following constraints (see [53] for these and
further constraints). Note that we scaled all engineering constraints so that they are on similar
scales.

The absolute value of active power through a line e ∈ E should stay below a certain
maximum Pmax

e

(Gece + Bese − Gevn(e))/P
max
e − 1 � 0, ∀e ∈ E

−(Gece + Bese − Gevn(e))/P
max
e − 1 � 0, ∀e ∈ E

(Gece − Bese − Gevm(e))/P
max
e − 1 � 0, ∀e ∈ E

−(Gece − Bese − Gevm(e))/P
max
e − 1 � 0, ∀e ∈ E .

(34)

Each generator g ∈ G should keep their output inside a prescribed range given by
[PGen,min

g , PGen,max
g ] and [QGen,min

g , QGen,max
g ] for the active and passive power gener-

ation, respectively. This is formulated as

(Pg
n + αP

n �P)/PGen,max
g − 1 � 0, ∀g ∈ G

(PGen,min
g − (Pg

n + αP
n �P))/PGen,max

g � 0 ∀g ∈ G

(Qg
n + αQ

n �Q)/QGen,max
g − 1 � 0, ∀g ∈ G

(QGen,min
g − (Qg

n + αQ
n �Q))/QGen,max

g � 0, ∀g ∈ G .

(35)

Lastly, the voltage at each bus n ∈ B should be within prescribed bounds. This yields

vn/(V
max
n )2 − 1 � 0, ∀n ∈ N

((Vmin
n )2 − vn)/(V

max
n )2 � 0, ∀n ∈ N .

(36)

We consider fixed values for the nominal values for the real and imaginary loads at buses
Pd,nom ∈ R|N | and Qd,nom ∈ R|N | and for the generator set points Pg ∈ R|G| and Qg ∈
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R|G|. We search for a minimal change in real and imaginary loads x = [Pd ; Qd ] ∈ R2|N |
from these nominal values such that no safe grid state y = [v; c; s;�P;�Q] ∈ R|N |+2|E|+2

exits, where v, c and s represent the complex voltages of the network and where �P and
�Q represent the overall deficit in real and imaginary power.

In summary, the objective of the generalized semi-infinite optimization problem is f (x) =
1

2|N |
∑

n∈N (Pd
n − Pd,nom

n )2 + (Qd
n − Qd,nom

n )2, the coupling equality constraints heq are

linear and given by problem (29) and problem (30). The coupling inequality constraints hineq

are given by Eqs. (32) and (36) to (34). An arbitrary linear inequality is designated as the
semi-infinite constraint g to bring the problem into the format of problem (GSIP-eq) since
the lower level is essentially a feasibility problem. This does not have any impact on the
algorithm considering the symmetry between the semi-infinite constraint g and the coupling
inequality constraints hineq in problem (2).

A.3 Additional proofs

Lemma 4 Assume that g : X × R → Rm is monotonic in each component with respect to its
second argument. Consider the optimization problem

min
x∈X ,z∗∈Z f (x)

s.t. g(x, f L(z)) � 0

z∗ ∈ argmin
z∈Z(x)

f L(z∗)
(A.1)

with compact sets X and Z.
The solution set of problem (A.1) and

min
x∈X ,z∈Z f (x)

s.t. g(x, f L(z)) � 0
(A.2)

projected onto the x component are identical.

Proof A point x̂ is feasible in problem (A.2) if and only if it is feasible in problem (A.1).
Assume x̂ is feasible in problem (A.2). Thus, ∃z ∈ Z : g(x̂, f L(z)) � 0. Since g is
monotonic in the second argument, this implies g(x̂,min

z∈Z
f L(z)) � 0, in other words, x̂ is

feasible in problem (A.1).
Assume x̂ is infeasible in problem (A.2). Thus, �z ∈ Z : g(x̂, f L(z)) � 0. This implies

g(x̂,min
z∈Z

f L(z)) > 0 ��

Corollary 1 The convergence guarantees of Theorem1 still holdwhen replacingD in problem
(LBP-eq) in any iteration of Algorithm 1 with the filtered discretization set D̃ := {i ∈ D |
f (xi )+ε f ilter � LBD} and adding the constraint f (x) � LBD for any valid lower bound
for the optimal value f ∗ of problem (GSIP-eq), i.e., L BD � f ∗.

Proof First, consider the case where the filtering causes no discretization points to be dis-
carded. Clearly, Theorem 1 still holds for the modified algorithm. Next, consider the case
where the filtering causes discretization points to be discarded finitely often. Consider the
last iteration where this happens. All subsequent iterations are equivalent to applying prob-
lem (GSIP-eq) with the additional constraints introduced by the filtered discretization set
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D̃ and the added constraint f (x) � LBD. These constraints are redundant in that they
do not change the feasible set compared to the original problem. Thus, convergence holds
under the same conditions as in Theorem 1. Lastly, assume that discretization points are
dropped for an infinite number of iterations. This leads to a contradiction since we enforce
f (x) � LBD in all iterations following the filtering but only discard discretization points
with f (xi ) + ε f ilter � LBD. Thus, the lower bound LBD must have increased by at least
ε f ilter between these iterations. Since the host-set X is compact and f is continuous, this
can only occur finitely often. ��
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