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Abstract
In [Sass et al., Eur. J. Oper. Res., 316 (1): 36 – 45, 2024], we proposed a branch-and-bound
(B&B) algorithmwith growing datasets for the deterministic global optimization of parameter
estimation problems based on large datasets. Therein, we start the B&B algorithm with a
reduced dataset and augment it until reaching the full dataset upon convergence. However,
convergence may be slowed down by a gap between the lower bounds of the reduced and the
original problem, in particular for noisy measurement data. Thus, we propose the use of out-
of-sample estimation for improving the lower bounds calculatedwith reduced datasets. Based
on this, we extend the deterministic approach and propose two heuristic approaches. The
computational performance of all approaches is compared with the standard B&B algorithm
as a benchmark based on real-world estimation problems from process systems engineering,
biochemistry, and machine learning covering datasets with and without measurement noise.
Our results indicate that the heuristic approaches can improve the final lower bounds on the
optimal objective value without cutting off the global solution. Aside from this, we prove that
resampling can decrease the variance of the lower bounds calculated based on random initial
datasets. In our case study, resampling hardly affects the performance of the approaches
which indicates that the B&B algorithm with growing datasets does not suffer from large
variances.
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1 Introduction

The validity of parameter estimation results increases significantly when avoiding both
suboptimal solutions and overfitting. Suboptimal solutions can be excludedwhen using deter-
ministic global optimization (DGO) methods [1, 2]. Common DGO methods [3, 4] like the
branch-and-bound (B&B) algorithm [5, 6] reach their limitations when solving large-scale
nonconvex optimization problems arising from many parameter estimation problems [7–9].

To overcome these limitations, we [10] extended the standard B&B algorithm by using
growing datasets. Briefly speaking, we start the B&B algorithm with a reduced model
obtained by picking only a small subset of the full dataset and augment the dataset until
converging to the full dataset provided. For this, we introduced augmentation rules which
decide for each processed node whether to augment the dataset or to branch the parameter
domain. We have proven that the B&B algorithm with growing datasets remains a DGO
method, see Theorem 2 of [10]. A key point of the proof is that the lower bounding prob-
lem based on reduced datasets yields a valid lower bound for the original problem, i.e., the
parameter estimation problem based on the full dataset. Another key point is the choice of
an augmentation rule which guarantees reaching the full dataset eventually. However, when
data reduction allows for a much looser lower bound and objective value, convergence may
be slowed down or even prevented depending on the augmentation rule, see Example 1 in
[10]. This brings us back to the topic of overfitting.

In the context of machine learning, overfitting refers to the phenomenon of models per-
forming well on the data used for training but fail to generalize to new data [11, 12]. In
practice, the actual performance of the trained model is therefore commonly estimated
based on independent datasets, the so-called validation sets. We transfer these findings to
the B&B algorithm with growing datasets by using out-of-sample evaluations for improving
the lower bounds calculated based on the reduced dataset (reduced lower bound). In detail,
we use an approximated lower bound given by a combination of the reduced lower bound and
the out-of-sample evaluation for (i) a novel augmentation rule and (i i) for pruning. While
(i) yields a heuristic rule aiming to improve the performance of the deterministic approach,
with (i i) we loose the theoretical guarantee for converging towards the global solution and
therefore obtain mere heuristic approaches. To estimate whether the heuristic pruning indeed
cuts off the global solution, we propose a post-processing check of the final lower bound
after the termination of the B&B algorithm.

In [10], we proposed to pick the data points for the reduced datasets randomly from the
full dataset. In this article, we exploit this randomness for improving the reduced lower bound
for both the heuristic augmentation rule and the heuristic pruning. In fact, resampling is a
common tool in statistics to reduce the bias and variance of estimators, cf. [13, 14] and [15,
Chapter 5]. In our approach, resampling a reduced dataset comes with the calculation and
optimization of a lower bounding problem, making it computationally costly. We therefore
propose to use two subsamples for updating the reduced lower bound based on the initial
dataset.

All proposed extensions of the B&B algorithm with growing datasets are implemented
in our open-source solver MAiNGO1 [16] which is a DGO solver for factorable mixed-
integer nonlinear programs. We perform an extensive case study comparing the deterministic
and heuristic approaches of the B&B algorithm with growing datasets with the standard
B&B algorithm as a benchmark. For this, we revisit real-world applications from our pre-
vious work and collected further models from literature resulting in 13 different parameter

1 Available at https://git.rwth-aachen.de/avt-svt/public/maingo.
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estimation problems covering the fields of process systems engineering, biochemistry, and
machine learning. Ready-to-use implementations of the problem formulations are published
in our open-source repository GloPSE2.

The remainder of this article is structured as follows. Section 2 comprises themathematical
background, where we start with an overview on our notation in Section 2.1. Subsequently,
the main algorithmic and theoretical advances of the B&B algorithm with growing datasets
from [10] are recalled in Section 2.2. In Section 3, we obtain an approximate lower bound for
the original problem based on the reduced lower bound and out-of-sample evaluation. This
approximation is used for a novel augmentation rule in Section 3.1, and for introducing a
heuristic approach including a post-processing step in Section 3.2. In Section 3.3, we transfer
the findings to estimation problems minimizing the mean squared error yielding a second
heuristic approach. In Section 4, we propose a heuristic lower bound based on resampling.
In Section 5, we perform an extensive case study evaluating the proposed post-processing
procedure and comparing all approaches of the B&B algorithm with growing datasets with
the standard B&B algorithm, before we conclude in Section 6.

2 Preliminaries

2.1 Problem formulation and notation

As in our previous work [10], we focus on finding globally optimum parameter values p ∈ P
minimizing

min
p∈P

∑

(xd ,yd )∈D
g( p; xd , yd) (SSE)

s.t. h(xd , yd ; p) ≤ 0 ∀(xd , yd) ∈ D

h̃( p) ≤ 0, (PE)

where g(·; xd , yd) = ( f (xd ; ·) − yd)2 is the squared prediction error of a parameterized
model function f (·; p) : R

m → R for data point (xd , yd) ∈ D � R
m × R, and h(xd , yd ; ·)

and h̃ are the residual functions of the data-dependent and data-independent inequality con-
straints on parameters p ∈ P , respectively. Let the parameter domain P � R

n be a closed,
bounded box. In case of integer parameters, let the parameter domain consist of subse-
quent discrete values. Note that g(·; xd , yd) is nonnegative, and strictly positive in case of
model-data mismatch caused by measurement errors, suboptimal parameter values, or model
misspecification.

In the following, we call D the full dataset and parameter estimation problem (PE) the
original problem. Let gcv(·; xd , yd) : P → R be a non-negative convex underestimator of
g(·; xd , yd) as well as hcv(xd , yd ; ·) and h̃cv be convex underestimators of h(xd , yd ; ·) and h̃,
respectively. Then, the optimal solution of the convex optimization problem

min
p∈P

∑

(xd ,yd )∈D
gcv( p; xd , yd) (LBP)

s.t. hcv(xd , yd ; p) ≤ 0 ∀(xd , yd) ∈ D
h̃cv( p) ≤ 0 ,

2 Available at https://git.rwth-aachen.de/avt-svt/public/glopse.

123

https://git.rwth-aachen.de/avt-svt/public/glopse


618 Journal of Global Optimization (2025) 92:615–642

gives a lower bound on the optimal solution of the original problem, which we will call full
lower bound. We refer to reduced problem and reduced lower bound when replacing the
dataset with a reduced dataset Dk ⊆ D within (PE) and (LBP), respectively. Note that, in
common DGO software, the lower bounding problem (LBP) is further relaxed to a linear
program without losing its validity for the original problem by linearizing valid convex
underestimators.

In the B&B node Nk = (Pk,Dk) processed in B&B iteration k ∈ N, optimization prob-
lems (PE) and (LBP) are solved for parameter domain Pk ⊆ P and dataset Dk ⊆ D. Let uk
be the best upper bound found until iteration k. Let lfullk and lredk be the full and reduced lower

bound calculated in node Nk with optimal parameter values plb,fullk and plb,redk , respectively.
If a lower bound calculated based on a reduced dataset cannot be guaranteed to be valid for
the original problem, we will call it heuristic lower bound l̂k compared to valid lower bounds
lk .

2.2 The B&B algorithmwith growing datasets

Asproposed in [10], theB&Balgorithmwith growing datasets extends the standard algorithm
by a data reduction step before entering theB&B loop and a subroutine for decidingwhether to
branch or augment a node, see Figure 1. For this, we associate all nodes Nk = (Pk,Dk) ∈ N
of the B&B tree with both a parameter domain Pk � P and a dataset Dk ⊆ D. In the
subroutine, cf. Subroutine 1 of [10], we call an augmentation rule A : N → {True,False}.
If A(Nk) =True, the dataset is augmented, i.e., we add one child node N new = (Pk,Dnew)

with Dnew � Dk . Otherwise, we branch the parameter domain while retaining the dataset,
i.e., we add two child nodes N new,1 = (Pk,1,Dk) and N new,2 = (Pk,2,Dk) with partition
Pk,1∪Pk,2 = Pk . With this, we obtain an algorithmwhich is guaranteed to converge towards
the global optimum of (PE) if we use a finitely convergent augmentation rule [10].

Definition 1 (Definition 1 of [10]) Let Dk ⊆ D be the dataset used in node Nk , which is
processed in iteration k of the B&B algorithm with growing datasets depicted in Figure 1.
The augmentation rule A : N → {True,False} completes finitely, if for any infinite nested
sequence of nodes {Nk j } j→∞ with Nk j = (Pk j ,Dk j ) it holds ∃J < ∞ : Dk j = D ∀ j ≥ J .

For completeness of contents, we repeat the main theoretical results of [10]. The inter-
ested reader may refer to the original publication [10] for more details and the proves. The
theoretical results are based on the following assumptions.

Assumption 1 (Assumptions 1 and 2 of [10])

(i) Let f (xd ; ·) : P → R and h(xd , yd ; ·) : P → R for any fixed (xd , yd) ∈ D as well
as h̃ : P → R be continuous.

(ii) Let gcv(·; xd , yd) be any nonnegative convex underestimator of g(·; xd , yd) over P
for any fixed (xd , yd) ∈ D.

(iii) Let hcv(xd , yd ; ·) and h̃cv be any convex underestimator of h(xd , yd ; ·) for any fixed
(xd , yd) ∈ D and h̃, respectively, over P .

With the help of the nonnegative convex underestimators, cf. Assumption 1(ii), we can
construct valid lower bounds based on a reduced dataset.

Lemma 1 (Lemma 1 (i) of [10] (adapted)) Let Assumption 1 hold.
Then,

∑
(xd ,yd )∈Dred

gcv( p; xd , yd) is a convex underestimator of both
∑

(xd ,yd )∈Dred
g( p; xd , yd) and ∑

(xd ,yd )∈D g( p; xd , yd) over P for any Dred ⊆ D.
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Fig. 1 Flow chart of the B&B algorithm with growing datasets [10] where the extensions of the standard
B&B algorithm are highlighted with dashed boxes.

Finally, we extended the proof of convergence of a standardB&Balgorithm given in Theorem
5.26 of Locatelli and Schoen [17]. In particular, we build upon their definitions for exactness
in the limit, the isotonic property of underestimators, and exhaustiveness of branching given
in Definition 5.4, Equation (5.34), and Definition 5.5, respectively, of [17].

Theorem 1 (Theorem 2 of [10] (adapted)) Let Assumption 1 hold. We apply a spatial
B&B algorithm with optimality tolerance ε > 0 to (PE). Let the convex underestimators
gcvD , hcv(xd , yd ; ·) ∀(xd , yd) ∈ D, and h̃cv be exact in the limit. Let gcv(·; xd , yd) and
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Table 1 Datasets, corresponding optimal objective and scaled optimal objective as given for Example 1 of
[10]

Data points Opt. obj. Opt. obj. scaled with |D|
|Dred|

D0 = {(0, 0.6)} 0.0 3 · 0 = 0

D1 = {(0, 0.6), (0, 1)} 0.08 3
2 · 0.08 = 0.12

D = {(0, 0), (0, 0.6), (0, 1)} 0.5067 0.5067

hcv(xd , yd ; ·) satisfy the isotonic property ∀(xd , yd) ∈ D. Let the subdivision process of the
B&B algorithm be exhaustive.
If we use an augmentation rule A which completes finitely, then the B&B algorithm with
growing datasets depicted in Figure 1 terminates after a finite number of iterations and

• either establishes that the problem is infeasible if the final upper bound equals infinity
• or returns an ε-optimal solution if the final lower bound is finite.

Note that it is essential for the proof of finite convergence that the augmentation rule
completes finitely. Otherwise there may be a gap between reduced and full lower bound
preventing augmenting or even pruning based on the reduced dataset, see the following
example.

Example 1 (Example 1 of [10] (adapted)) We want to solve

min
a∈[0,25](a − 1)2 + (a − 0.6)2 + (a − 0)2 ,

where we find a linear function f (x; a) = a · x through the origin and three data points
D = {(1, 0), (1, 0.6), (1, 1)} at the same input x = 1, with a naive implementation of the
B&B algorithmwith growing datasets using augmentation ruleAscaling with ρ = 1. Assume
that the (reduced) datasets are chosen as in Table 1. Even if the lower bound calculated based
on reduced datasets D0 and D1 is exact, i.e., equals the respective optimal objective at the
optimum point p∗, gaps would remain

∑

(xd ,yd )∈D0

gcv( p∗; xd , yd) �
∑

(xd ,yd )∈D1

gcv( p∗; xd , yd)

�
∑

(xd ,yd )∈D
gcv( p∗; xd , yd) ≤

∑

(xd ,yd )∈D
g( p∗; xd , yd)

Branching does not help either since we already assume exact lower bounds. With that,
neither augmenting nor convergence is possible. 
�

3 Out-of-sample estimation with growing datasets

The reduced lower bound is valid for the original problembutmaybe too loose for augmenting
or pruning, cf. Section 2.2 and [10]. In this case, the time savings due to the data reductionmay
be canceled out by the unnecessary large B&B tree. Thus, we propose to apply out-of-sample
evaluation for a better approximation of the full lower bound. We expect that the solution of
the reduced bounding problem plus this additional evaluation remains computationally faster
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than calculating the full lower bound. In detail, we evaluate (LBP) over all remaining data
points D \Dk at the optimal solution point plb,redk yielding the heuristic out-of-sample lower
bound

l̂oosk :=
∑

(xd ,yd )∈D\Dk

gcv( plb,redk ; xd , yd) .

Note that we define the out-of-sample lower bound only for proper subsets Dk � D. Based
on empirical evidence, we expect the out-of-sample lower bound to be valid for the original
problem. In fact, the out-of-sample lower bound sums up less nonnegative terms than the
full lower bound, where each term is a function evaluation at point plb,redk which is typically

close or equal to the optimal solution point plb,fullk .

Postulate 1 For B&B nodes with reduced datasets Dk � D, out-of-sample lower bound l̂oosk

is smaller than or equal the full lower bound lfullk and therefore valid for the original problem.

Postulate 1 may be violated for pathological cases as shown in the following example.

Example 2 (Non-valid l̂oosk ) Assume that we are looking for the best slope of a linear function
through data points D = {(1, 1), (2, 5.5), (3, 3)} � R

2 yielding the unconstrained convex
parameter estimation problem

min
p∈[0,10]

∑

(xd ,yd )∈D
(p · xd − yd)

2 . (1)

Assume further that the reduced dataset at B&B iteration k is given byDk = {(1, 1), (3, 3)}.
Due to the convexity of (1), we can solve it also as the lower bounding problem. We observe
lredk = 0 at optimal solution point plb,redk = 1, meaning that we can fit data points Dk exactly
by the identity. We obtain l̂oosk = (1 · 2− 5.5)2 = 12.25, and lfullk = 8.75 at optimal solution

point plb,redk = 1.5. Hence, out-of-sample lower bound l̂oosk is larger than the full lower bound
lfullk .

With the help of both reduced and out-of-sample lower bound, we can enclose the full
lower bound.

Lemma 2 Let gcv(·; xd , yd) be Lipschitz continuous in domain P with Lipschitz constants
Ld > 0 for any d = 1, . . . , |D|. If plb,redk is feasible for (LBP), then

lredk + l̂oosk − L · || plb,fullk − plb,redk || ≤ lfullk ≤ lredk + l̂oosk

with L := ∑|D|
d=1 Ld .

Proof For the first inequality, we observe
∑

(xd ,yd )∈D
gcv( plb,fullk ; xd , yd)

=
∑

(xd ,yd )∈D

(
gcv( plb,redk ; xd , yd) + gcv( plb,fullk ; xd , yd) − gcv( plb,redk ; xd , yd)

)

=
∑

(xd ,yd )∈Dk

gcv( plb,redk ; xd , yd) +
∑

(xd ,yd )∈D\Dk

gcv( plb,redk ; xd , yd)

+
∑

(xd ,yd )∈D

(
gcv( plb,fullk ; xd , yd) − gcv( plb,redk ; xd , yd)

)
. (2)
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Since plb,redk is feasible for (LBP) and plb,fullk minimizes (LBP), we have
∑

(xd ,yd )∈D
gcv( plb,fullk ; xd , yd) ≤

∑

(xd ,yd )∈D
gcv( plb,redk ; xd , yd)

and, together with Lipschitz continuity,

−
∑

(xd ,yd )∈D

(
gcv( plb,fullk ; xd , yd) − gcv( plb,redk ; xd , yd)

)

= |
∑

(xd ,yd )∈D

(
gcv( plb,fullk ; xd , yd) − gcv( plb,redk ; xd , yd)

)
|

additivity≤
∑

(xd ,yd )∈D
|gcv( plb,fullk ; xd , yd) − gcv( plb,redk ; xd , yd)|

Lipschitz≤
∑

(xd ,yd )∈D
Ld · || plb,fullk − plb,redk ||. (3)

Inserting (3) in (2) gives
∑

(xd ,yd )∈D
gcv( plb,fullk ; xd , yd ) ≥

∑

(xd ,yd )∈Dk

gcv( plb,redk ; xd , yd ) +
∑

(xd ,yd )∈D\Dk

gcv( plb,redk ; xd , yd )

− L · || plb,fullk − plb,redk ||
which is the same as the first inequality of Lemma 2.

For the second inequality, we observe

lfullk =
∑

(xd ,yd )∈D
gcv( plb,fullk ; xd , yd) ≤

∑

(xd ,yd )∈D
gcv( plb,redk ; xd , yd)

due to the optimality of plb,fullk and the feasibility of plb,redk for the full lower bounding
problem (LBP). Moreover, we have

∑

(xd ,yd )∈D
gcv( plb,redk ; xd , yd) =

∑

(xd ,yd )∈Dk

gcv( plb,redk ; xd , yd)

+
∑

(xd ,yd )∈D\Dk

gcv( plb,redk ; xd , yd)

which concludes the proof. 
�
Regarding the feasibility of point plb,redk for (LBP), we note that the data-independent con-
straints h̃cv are invariant to the dataset used. Thus, the feasibility is naturally given for any
model without data-dependent constraints hcv(xd , yd ; ·).

Based on Lemma 2, we define the heuristic combined lower bound

l̂combi
k := lredk + l̂oosk .

Note that the positivity of the cumulated Lipschitz constant L is crucial for bounding the
full lower bound below based on the combined lower bound. Due to the exhaustiveness
of branching, we have diam(Pk) → 0 for B&B iteration k → ∞ and, thus, || plb,fullk −
plb,redk || → 0 (k → ∞). Even at the beginning of the B&B algorithm, i.e., for small k, the

optimal points plb,fullk and plb,redk often coincided in numerical experiments performed with
the models investigated in Section 5. Consequently, we expect numerical advantages when
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replacing the full lower bound with the combined lower bound as formalized in the following
postulates.

Postulate 2 1. For most B&B nodes, the combined lower bound l̂combik is (almost) equal to

the full lower bound lfullk .
2. The evaluation of a lower bounding problem requires significantly smaller numerical

effort than its optimization. In particular, calculating the combined lower bound l̂combik

is numerically cheaper than calculating the full lower bound lfullk .

In other words, we obtain a tight approximation of the full lower bound whose computation
is still less costly compared to calculating the full dataset.

3.1 Deterministic approach

In the B&B algorithm with growing datasets, we either branch the parameter domain or
augment the dataset of each B&B node which is not pruned, cf. Figure 1. As recalled in
Section 2.2, this decision is made by so-called augmentation rules. In [10], we introduced
the intuitive augmentation rule Aconst triggering augmentation for nodes at a specific depth
within the B&B tree

Aconst(Nk) :=
{
True, if depth(Nk )

c ∈ Z

False, else

with a user-defined constant c ∈ Z. As an alternative, we proposed augmentation rule

Ascaling(N ) :=
{
True, if ρ · l̂scaledk ≥ uk − ε

False, else
,

where uk is the upper bound computed for the currently active node Nk , ρ a constant in (0, 1]
provided by the user, and l̂scaledk the heuristic scaled lower bound

l̂scaledk := |D|
|Dred| · lredk .

Thus, Ascaling with default augmentation weight ρ = 1 triggers augmentation for any node
which could have been pruned based on the full lower bound under the expectation that the
full lower bound equals the scaled lower bound. Based on Lemma 2, we assume that the
combined lower bound gives a tighter approximation of the full lower bound than the scaled
lower bound. We therefore propose augmentation rule combi

Acombi(Nk) :=
{
True, if l̂combi

k ≥ uk − ε

False, else
,

where ε is the optimality tolerance. When using heuristic lower bounds solely within the
augmentation rule and the valid lower bound lredk for pruning, we obtain a deterministic
approach [10].

3.2 SSE heuristic

The downside of the deterministic approach is that the gap between reduced and full lower
bound may slow down or even prevent convergence when using heuristic augmentation
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Fig. 2 Consequences for the optimal solution in dependence of the relation between post-processed lower
bound lfullk and both final lower bound l̂ andfinal upper bound u reported after termination of theB&Balgorithm

rules like Ascaling which do not complete finitely, compare Example 1. In theory, we can
guarantee convergencewhen combining both rules to a hybrid augmentation ruleAscalcst :=
Ascaling∨Aconst [10].However, this hybrid augmentation rule coincideswithAconst in cases
similar to the pathological problem in Example 1.Motivated by Lemma 2 and Postulate 2, we
rather propose the SSE heuristic which uses the combined lower bound for pruning nodes in
the B&B algorithm with growing datasets. Even when satisfying Postulate 2, the combined
lower boundmay be strictly larger than the full lower bound andmay allow for pruning nodes
containing the global solution of the original problem. Indeed, we may make a mistake for
any node pruned based on a reduced dataset

N postpro := {Nk : l̂combi
k ≥ uk and Dk � D} .

As a post-processing step, we therefore use the full lower bound lfullk of each node Nk ∈
N postpro to update the final lower bound.

For post-processing, we need to distinguish three cases in dependence of the heuristic
final lower bound l̂ and final upper bound u reported after termination of the B&B algorithm,
see Figure 2. Firstly, it was correct to prune the node if its full lower bound satisfies lfullk > u.
Secondly, if lfullk is within the final lower and upper bound reported, the global solution of
the original problem lies within the user-given optimality tolerance no matter whether it is
contained in node Nk or another node. Thirdly, if lfullk is smaller than the (heuristic) final
lower bound l̂, we may have cut off the global solution. In this case, we know lfullk < l̂ ≤ u ≤
uk ≤ l̂combi

k . To obtain a deterministic approach, we would need to re-run the B&B algorithm
for all nodes

N changed := {Nk ∈ N postpro : lfullk < l̂}
as the root node. However, this can become very costly, especially if the parameter domains
of the respective nodes are comparatively large. Instead we update the final lower bound
by the minimum over lfullk , k : Nk ∈ N changed yielding a more accurate value for the true
lower bound on the optimal solution, see Subroutine 1. To limit the numerical effort for
post-processing, we only track the 100 nodes of N postpro with the smallest values for l̂combi

k ,
i.e., the 100 tightest pruning decisions, see Subroutine 2.

Wecan transfer augmentation rulesAconst andAscaling from the deterministic approach to
the SSE heuristic without any changes, see Figure 3. However, the interval between combined
and scaled lower bound may vanish if both are accurate approximations of the full lower
bound. In that case, augmentation rule Ascaling cannot trigger augmentation. We therefore
introduce an interval of uncertainty around the combined lower bound used for pruning, and
augment if we fall within this tolerance ε̂ giving augmentation rule tol

Atol(Nk) :=
{
True, if l̂combi

k ≥ uk − ε̂

False, else
.
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Algorithm 1 Post-processing
Require: Set of nodes tracked for post-processingN postpro, final lower bound l̂ after termination ofB&Balgo-

rithm
Ensure: Updated final lower bound l̂
1: for all k : Nk ∈ N postpro do
2: Solve (LBP) over Pk based on full dataset D and obtain lfullk
3: if l̂ > lfullk then

4: l̂ := lfullk
5: end if
6: end for

Algorithm 2 Tracking nodes for post-processing within pruning step

Require: Set of nodes tracked for post-processing N postpro, currently pruned node N with lower bound
l̂combi

Ensure: Updated set N postpro

1: if |N postpro| < 100 then
2: N postpro := N postpro ∪ {N }
3: else
4: k0 := argmaxk:Nk∈N postpro {̂lcombi

k }
5: if l̂combi < l̂combi

k0
then

6: N postpro := N postpro \ {Nk0 } ∪ {N }
7: end if
8: end if

Fig. 3 Schematic overview of fathoming a node with objective (SSE) in dependence of its upper bound uk :
pruning, augmenting, and branching based on different augmentation rules as well as the postulated order of
reduced, combined, and out-of-sample lower bound. The shaded rectangles indicate the exact fathoming based
on the full dataset, where we expect the full lower bound to be in the the hatched region
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InMAiNGO, we prune nodes after deducting the optimality tolerance, i.e., if l̂combi
k ≥ uk −ε.

To ensure a non-empty interval [ l̂combi
k + ε, l̂combi

k + ε̂ ] for triggering augmentation, we use
ten times the default optimality tolerance ε for the augmentation tolerance ε̂, namely ε̂ = 0.1
by default.

3.3 MSE heuristic

In estimation problems from literature, the mean squared error

1

|D|
∑

(xd ,yd )∈D
g( p; xd , yd) (MSE)

is preferred as objective over the summed squared error (SSE). Both objectives lead to the
same optimal parameter values as they only differ by a factor independent of the parameters.
However, the relations of reduced, full, and out-of-sample lower bound changes which may
affect the convergence behavior of the B&B algorithm. For example, we expect the reduced
lower bound to converge from below and the out-of-sample lower bound to converge from
above to the full lower bound as is true for in-sample and out-of-sample estimation inmachine
learning during training [11]. We therefore propose the MSE heuristic on top of the SSE
heuristic by replacing objective (SSE) with (MSE) in (PE).

Let plb,fullk,MSE and plb,redk,MSE be theminimizer of (LBP) over domainPk with objective function
(MSE) based on dataset D and Dk , respectively. We denote the respective full and heuristic
reduced lower bound with lfull,MSE

k and l̂red,MSE
k . Note that the reduced lower bound may be

larger than the full lower bound or even the optimal solution when using (MSE).
Additionally, we adapt the definition of the heuristic out-of-sample lower bound yielding

l̂oos,MSE
k := 1

|D| − |Dk |
∑

(xd ,yd )∈D\Dk

gcv( plb,redk,MSE; xd , yd) .

When using (MSE), the combined lower bound is given by a convex combination rather than
the sum of reduced and out-of-sample lower bound.

Lemma 3 Let gcv(·; xd , yd) be Lipschitz continuous in domain P with Lipschitz constants
Ld > 0 for any d = 1, . . . , |D|. If plb,redk,MSE is feasible for (LBP) with objective (MSE), then

lfull,MSE
k ≥ rk · l̂ red,MSE

k + (1 − rk) · l̂oos,MSE
k − LMSE · || plb,fullk,MSE − plb,redk,MSE||

with LMSE := 1
|D|

∑|D|
d=1 Ld and data ratio rk := |Dk ||D| .

Proof Analogously to the proof of Lemma 2, we obtain

1

|D|
∑

(xd ,yd )∈D
gcv( plb,fullk,MSE; xd , yd) ≥ 1

|D|
∑

(xd ,yd )∈Dk

gcv( plb,redk,MSE; xd , yd)

+ 1

|D|
∑

(xd ,yd )∈D\Dk

gcv( plb,redk,MSE; xd , yd)

− 1

|D|
∑

(xd ,yd )∈D
Ld · || plb,fullk,MSE − plb,redk,MSE||.

Observing 1 − rk = |D|−|Dk ||D| = |D\Dk |
|D| concludes the proof. 
�
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Fig. 4 Schematic overview of fathoming a node with objective (MSE) in dependence of its upper bound uk :
pruning, augmenting, and branching based on different augmentation rules as well as the postulated order of
reduced, combined, and out-of-sample lower bound. The shaded rectangles indicate the exact fathoming based
on the full dataset, where we expect the full lower bound to be in the the hatched region

Lemma 3 shows that we can expect the combined lower bound

l̂combi,MSE
k := rk · l̂red,MSE

k + (1 − rk) · l̂oos,MSE
k

to be a valid lower bound of the original problem if the optimal solution points plb,fullk,MSE

and plb,redk,MSE coincide. The positive mean Lipschitz constant LMSE allows for bounding the

difference l̂combi,MSE
k −lfull,MSE

k from above. Again, this bound converges to 0with increasing
B&B iteration k due to the exhaustiveness of branching. Note that combined, reduced, and
full lower bound coincide for Dk = D by definition. Analogously to Postulate 2, we expect
the following:

Postulate 3 1. For most B&B nodes, the combined lower bound l̂combi,MSE
k is (almost) equal

to the full lower bound lfull,MSE
k .

2. Calculating the combined lower bound l̂combi,MSE
k is numerically cheaper than calculating

the full lower bound lfull,MSE
k .

In the MSE heuristic, we therefore propose to use the combined lower bound l̂combi,MSE
k for

pruning and to apply the post-processing procedure described in Subroutines 1 and 2 with
the adapted definition of the combined and full lower bound.

We re-use augmentation rules Aconst and Atol for the MSE heuristic, compare Figure 4.
Since Ascaling was motivated by using the reduced and full mean squared error, it does not
add value when using (MSE). Instead, we introduce augmentation rule oos

Aoos(Nk) :=
{
True, if l̂oos,MSE

k ≥ uMSE
k − ε

False, else

which triggers augmentation if we detect overfitting in form of a gap between the full lower
bound, approximated by the combined lower bound, and the out-of-sample lower bound
preventing pruning.
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4 Resampling the initial dataset

In machine learning and statistics, resampling techniques like cross-validation, random
forests, boosting, and bootstrap aggregation are used to reduce the estimation variance, see
[15, Chapter 5 and Section 8.2] and [18, Chapters 7−10 and 15]. For example, the aver-
age generalization error of random forests containing many trees is proven to be at least as
small as the average generalization error of one random tree, see Theorem 11.2 of [19]. We
transfer this property to the aggregation of reduced lower bound using bootstrap aggrega-
tion or, in short, bagging [20]. In our approach, bagging means to randomly choose another
reduced dataset Dk,∗, solve the lower bounding problem another time to obtain lower bound
gcvDk,∗( p

lb,red,∗
k ), and aggregate the resulting reduced lower bounds.

We observed in [10] that the computational effort for solving the lower bounding problem
is approximately linear in the size of the used dataset. In other words, using two subsamples
already means doubling the computational effort. We therefore restrict ourselves to a maxi-
mum of two subsamples. However, the results of Lemmas 4 and 5 derived in the following
can be easily extended to the use of more subsamples.

We define

gDk (·) :=
∑

(xd ,yd )∈Dk

gcv(·; xd , yd)

and quote the assumptions on the datasets from [10].

Assumption 2 (Assumption 3 of [10])

(i) The full dataset D is non-random, i.e., D is a fixed set and not considered as a random
sample.

(ii) Let Dred � D be a reduced dataset with an a-priori fixed size, where the data points in
Dred are picked randomly from D such that Dred follows a discrete uniform probability
distribution over all subsets of D with size |Dred|.
Based on this, we can show that the expected value EV [·] of the lower bound remains the

same when applying bagging.

Lemma 4 Let Dk,1 and Dk,2 be chosen according to Assumption 2.
Then,

EV

⎡

⎣
gcvDk,1

( plb,red,1k ) + gcvDk,2
( plb,red,2k )

2

⎤

⎦ = EV
[
gcvDk,1

( plb,red,1k )
]
.

The statement of Lemma 4 follows from Dk,1 and Dk,2 having the same distribution and the
linearity of the expected value.

In contrast to that, the variance of the aggregated reduced lower boundmay be significantly
smaller than the variance of a single reduced lower bound. In the following, Var [·] indicates
the variance of a random variable, while Corr [·, ·] indicates Pearson’s correlation coefficient
between two random variables.

Lemma 5 Let Dk,1 and Dk,2 be chosen according to Assumption 2.
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Then,

Var

⎡

⎣
gcvDk,1

( plb,red,1k ) + gcvDk,2
( plb,red,2k )

2

⎤

⎦

=
1 + Corr

[
gcvDk,1

( plb,red,1k ), gcvDk,2
( plb,red,2k )

]

2
· Var

[
gcvDk,1

( plb,red,1k )
]

.

The statement of Lemma 5 follows from Dk,1 and Dk,2 having the same distribution as well
as the scaling and additive properties of variances.

As Corr [·, ·] ∈ [−1, 1] by the Cauchy-Schwarz inequality, Lemma 5 implies that bagging
can only improve the variance

Var

⎡

⎣
gcvDk,1

( plb,red,1k ) + gcvDk,2
( plb,red,2k )

2

⎤

⎦ ≤ Var
[
gcvDk,1

( plb,red,1k )
]
.

Equality can only be attained for perfectly correlated datasets giving

Corr
[
gcvDk,1

( plb,red,1k ), gcvDk,2
( plb,red,2k )

]
= 1. Contrarily, for uncorrelated datasets, i.e., a cor-

relation of 0, we can half the variance by picking a second subsample

Var

⎡

⎣
gcvDk,1

( plb,red,1k ) + gcvDk,2
( plb,red,2k )

2

⎤

⎦ = 1

2
Var

[
gcvDk,1

( plb,red,1k )
]
.

The correlation equals zero for independent random variables. However, we cannot expect
different reduced datasets to be independent, since (i) there may be systematic error affecting
a subset of data points similarly and (i i) the datasets are drawn from the same sampleD and
may therefore contain common data points. The extent of (i) highly depends on the model
and the actual datasetDwhich are both part of the fixed problem formulation in our setup. For
(i i), we have higher chances that different subsamples Dk,1 and Dk,2 are not intersecting,
if the size of the reduced datasets Dk is small compared to the full dataset D. By default
settings, we pick 10% of the data points from the full dataset for the initial dataset and add
another 25% of the data points when augmenting. This means the second smallest dataset
contains already a comparatively large part of the full dataset, namely 35% of all data points.
For example, assume a full dataset with |D| = 100. The probability that two subsamples
with |Dk,∗| = 10 do not intersect is about 0.33, while it is about 2.75 × 10−9 for subsamples
with |Dk,∗| = 35. Thus, we use the proposed resampling heuristic only to update the reduced
lower bound calculated based on the initial dataset.

5 Numerical results

In this section, we study the computational performance of the B&B algorithm with grow-
ing datasets using the standard B&B algorithm as a benchmark. In detail, we investigate
the deterministic approach from [10] as well as the heuristic approaches from Sections 3.2
and 3.3 using different augmentation rules. We run each of the approaches with and without
resampling the initial dataset, cf. Section 4. Both the standard B&B algorithm and all dis-
cussed algorithmic approaches of the B&B algorithm with growing datasets are available in
our open-source solver MAiNGO v0.8.2.
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Table 2 Overview on general properties and references of the models and data used in the case study

Name n |D| dim(x) Data Opt. class Original references
Model Data

Process systems engineering

EOS262 9 262 2 synthetic, exact MINLP [21, 22] [10]

EOS2262 9 2262 2 synthetic, exact MINLP — ” — — ”—

EOS262noisy 9 262 2 synthetic, noisy MINLP — ” — — ”—

EOS2262noisy 9 2262 2 synthetic, noisy MINLP — ” — — ”—

IHMcon 20 284 1 measured NLP [23] [24, 25]

IHMunc 10 284 1 measured NLP — ” — — ”—

kinetics 5 446 1 measured DO [1, 2, 26] [2]

EIS 7 26 1a measured NLP [27] [28, 29]

Biochemistry

TSP 12 20 8 synthetic, exact DO [30, 31] [10]

TSPnoisy 12 20 8 synthetic, noisy DO — ” — — ”—

Machine learning

GMMcon 6 272 1 measured NLP [32] [33, 34]

GMMineq 5 272 1 measured NLP — ” — — ”—

trainANN 21 220 3 measured NLP [35, 36] [37, 38]

aThe model output is a complex number, i.e., dim(y) = 2

Benchmark libraries frommathematical programming, e.g., MINLPlib [39], PrincetonLib
[40], and the COCONUT benchmark [41], only account for parameter estimation problems
(PE) considering small datasets which do not require our extension. Besides, our focus is
the solution of real-world applications extending the numerical proof-of-concept obtained
in [10]. Hence, we collected different models from both literature and our previous work
stemming from process systems engineering, machine learning, and biochemistry. These
models cover different classes of optimization problems including mixed-integer nonlinear
programs (MINLPs), nonlinear programs (NLPs), and dynamic optimization problems (DOs)
with up to n = 21 unknown parameters and a different number and dimension of data points
in full dataset D, see Table 2. The exact mathematical expressions are provided in Online
Resource 1. For ready-to-use implementations of the model as well as the exact data points
used refer to the aforementioned repository GloPSE2.

All computations are performed on Intel Xeon Platinum 8160 processors “SkyLake” (fre-
quency 2.1GHz, RAM = 3.75GB for a single node). Even small deviations in computational
times for processing one nodemay significantly change the number of nodes processedwithin
our CPU time limit of 23h when adding up. Consequentially, the final lower and upper bound
may change as well. Thus, we repeat each run 5 times and report the median of the final
bounds and, in case of convergence, CPU times. Note that we choose a CPU time limit of
23h such that we can guarantee a total runtime of 24h including the initialization of the model
and preparations of the output data.

We set the relative optimality tolerance to εR = 0.1. The absolute tolerance is fixed to
εA = 0.01 for all approaches using (SSE). When using (MSE), the objective is scaled by the
number of data points. In analogy,we scale the absolute optimality tolerance tomodel specific
values εA = 0.01/|D| when using (MSE). In each optimization run, we use Ipopt version
3.12.12 [42] for running 3 local searches as a pre-processing step in the root node. Moreover,
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Fig. 5 Lower bounds of nodes inN changed before (◦) and after (×) post-processing and change of final lower
bound l̂ due to post-processing compared to final upper bound u and relative optimality tolerance εR

we use McCormick relaxations [43, 44] calculated with MC++ [45] and a linearization in the
midpoint of the parameter intervals to obtain a linear program (LP) for lower bounding. For
models IHMcon, IHMunc, EIS, TSP, TSPnoisy, GMMcon, GMMineq, and trainANN, we
solve the LP with linear optimizer CLP v1.17.0 [46]. As the resulting LP of the EOS models
with noisy measurement data as well as model kinetics seems to be numerically difficult for
CLP and alternative LP solver CPLEX [47], we use interval extensions [48] calculated with
FILIB++ [49] for models EOS262, EOS2262, EOS262noisy, EOS2262noisy, and kinetics.
When using pure interval extensions, we disable the optimality-based bound tightening [50].
The upper bounding problem is solved with local optimizer LBFGS [51, 52] implemented
in the NLOPT toolbox v2.5.0 [53] for all models. To minimize deviations caused by small
differences in the CPU time required for processing a node, we limit the number of steps
performed by local solvers Ipopt and LBFGS rather than the CPU time used for each local
search. The complete listing of settings is provided in Online Resource 2.

5.1 Evaluation of post-processing

At first, we study the post-processing step to check whether we can expect the heuristic
approaches to converge to the global solutions. Table 3 summarizes the number of nodes
tracked for post-processing, the implications for the lower bounds reported, and themaximum
CPU time used for post-processing. Note that these are the statistics of run 1 out of the 5
repetitive runs only. The number of nodes tracked as well as which specific nodes are tracked
may vary if the number of processed nodes differs. However, we expect to make the largest
mistakes early, namely with small datasets, which is covered by all 5 repetitive runs. More
importantly, note that the statistics of models IHMcon, IHMunc, EIS, and trainANN are not
listed, just as the statistics of theMSE heuristic for models TSP and TSPnoisy, since no nodes
are tracked for post-processing in these cases. In these cases, we do not prune based on a
reduced dataset. This means we have a deterministic procedure so far at the cost of a large
B&B tree. Similarly, in runs with |N postpro| < 100 it seems to be hard to prune based on the
reduced datasets. As an exception, |N postpro| < 100 comprises also the case where we need
to process less than 100 nodes for convergence, cf. TSP model in Table 3.

We observe that for only 4 out of 13 models there are nodes where the lower bound lfullk
calculated in post-processing falls below the final upper bound, i.e., where we may have
made a wrong pruning decision due to data reduction. Out of these, the final lower bound is
updated solely for 3 models, namely when using the SSE heuristic applying augmentation
rules scaling and tol for model EOS262 and augmentation rule tol for models GMMcon
and GMMineq.

We pick two exemplary cases to depict the changes due to post-processing in Figure 5. In
both cases, the nodes which affect the final lower bound l̂ have been only just pruned with
l̂combi
k � (1 − εR) · u. In model EOS262, the changes due to post-processing are essentially
nonexistent: we find numerically insignificant differences of 10−14 to 10−18. In contrast to
that, the final lower bound of models GMMcon and GMMineq change significantly, e.g.,
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from 723.7 to 406.7 for GMMineq when using resampling, extending the relative optimality
gap from 15% to 86%.

For 95% of 156 cases, including the 2 heuristic approaches with 3 different augmentation
rules each for 13 models with and without resampling, the final lower bound was not changed
and only in 4 cases the changewas significant. In particular, the final lower boundwas changed
only when using the SSE heuristic. Note that the post-processing is very cheap: over all 5
repetitions of the case study we measured a maximum runtime of 11.3s.

In conclusion, even the heuristic approaches converge towards the global solution in most
of the cases. The post-processing procedure detects the remaining cases with small compu-
tational effort and provides means for deciding whether the heuristic pruning significantly
distorts the solution obtained.

5.2 Comparison of computational performance

Finally, we study the performance of the B&B algorithmwith growing datasets with the stan-
dard B&B algorithm as a benchmark. Only 4 models converge within the CPU time limit of
23h for at least one of the approaches including all 3models with exact data, namely EOS262,
EOS2262, and TSP, compare Table 4. For models EOS262 and EOS2262, the deterministic
approach is the fastest with decreasing the runtime of the standard B&B algorithm by a factor
of 3 and up to 4, respectively. For the TSP model, the MSE heuristics finds the global solu-
tion in the root node, resulting in a runtime of 2s, while the standard B&B algorithm takes
about 2h for convergence with (SSE) and hits the CPU time limit with (MSE). Note that for
exact data, the final lower bound equals the natural lower bound of 0 except for numerical
tolerances. Thus, using reduced datasets allows for reducing the computational costs while
retaining the tightness of the bounds on the optimal solution.

Contrarily, the standard B&B algorithm performs best for the EIS model: it converges
within 8h, whereas all approaches of the B&B algorithm with growing datasets hit the CPU
time limit. In the EIS model, we fit a model with 7 unknown parameters to a full datasetD �

R×R
2 with |D| = 26 data points and,with the default settings, to reduced datasets containing

3, 10, 17, and 24 data points. Consequently, this parameter estimation problem is prone to
overfitting, in particular, when using reduced datasets. In other words, the computational
savings due to the data reduction come at the cost of looser lower bounds. Out-of-sample
estimation allows for improving upon the quality of the lower bounds calculated based on
reduced datasets, cf. Figure 6.

Figure 6 provides an overview of the range of final lower and upper bounds obtained by
the different algorithmswithin the CPU time limit. Note that the lower bounds include, where
applicable, the correction performed in the post-processing step and that the exact values are
given in Online Resource 1. The first row of Figure 6 contains the models considering exact
data such that the final lower bound is equal to zero except for numerical tolerances and the
optimal solution is in the range of the optimality tolerance. For the remaining models, all
approaches give a similar or even the same solution after the CPU time limit, compare the
upper bounds depicted in Figure 6. For 7 out of 10 models considering noisy data, the SSE
heuristic gives the best, i.e., largest, final lower bound. For 2 of these 10 models, the SSE
heuristic and the standard B&B algorithm perform similarly. Only for IHMcon, the standard
B&B algorithm finds the best lower bound. In accordance with the results of Section 5.1,
we therefore conclude that the SSE heuristics allows to significantly increase the final lower
bound within a given CPU time limit.
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Fig. 6 Final lower bounds lk or l̂k (strictly below dashed line) and final upper bounds u (above dashed line)
on the optimal solution of the models for any of the approaches, namely the standard B&B algorithm (std)
with objectives (SSE) and (MSE) as well as the deterministic approach (det), the SSE heuristic (heuS) and
the MSE heuristic (heuM) of the B&B algorithm with growing datasets using the augmentation rules depicted
in Figures 3 and 4. If applicable, the final lower bounds are subject to post-processing. The squares in the
logarithmic plots indicate lower bounds equal to 0

We recall that models IHMunc and IHMcon are mathematically equivalent. While the
optimization variables are coupled via equality constraints in the former, we use this relation
as an explicit evaluation function for the latter, compare also the full-space and reduced-
space formulations discussed in [2, 54]. While the final lower bound reported for IHMunc
differs from 0 only when using the heuristic approaches, only the standard B&B algorithm
and the deterministic approach determine lower bounds larger than 0 for IHMcon. The best
lower bound for model IHMunc is in order of magnitude 106, while the best lower bound for
model IHMcon is in order of magnitude 105. Thus, applying the heuristic approaches of the
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B&B algorithm with growing datasets to the reduced-space formulation performs best for
the IHM model. In analogy, the equality constraint in GMMcon is used to fix an unknown
parameter in GMMineq. In this case, the reduced-space formulation GMMineq seems to be
slightly advantageous for finding a good upper bound, while the lower bounds obtained for
models GMMcon and GMMineq are similar for the different approaches.

When comparing the CPU times with and without resampling, cf. Table 4, there is no
general tendency. On the one hand, resampling requires more computational resources. On
the other hand, resampling affects the lower bound. Since MAiNGO uses the solution point
of the lower bounding problem to initialize the local solver for the upper bounding problem,
we may obtain a much better upper bound with resampling by chance. In this case, we need
significantly less iterations for convergence. Apart from this, resampling does not seem to
affect the final lower bounds in most of the cases, see Figure 6. In fact, the deviation in
the number of nodes processed over the 5 repetitive runs affects the results in some cases
as much as the choice whether to use resampling, e.g., the final lower bounds reported for
model EOS2262. Noting that the resampling heuristic was introduced to reduce the variances
of the reduced lower bounds, we infer that the B&B algorithm with growing datasets does
not suffer from large variances.

6 Conclusions and outlook

We investigate out-of-sample estimation for enhancing the B&B algorithm with growing
datasets proposed in our previouswork [10]. In detail, we combine the lower bound calculated
in a B&B node based on a reduced dataset with an out-of-sample evaluation obtaining the
combined lower bound. Although the combined lower bound is only a heuristic lower bound,
we expect it to be close to the lower bound calculated based on the full dataset. We use this
heuristic lower bound for extending the deterministic approach presented in [10] as well as
for pruning which results in two heuristic approaches, the so-called SSE and MSE heuristic.
To detect and quantify potential mistakes made by the SSE and MSE heuristic, we introduce
a post-processing check of the final lower bound after the B&B algorithm terminated.

We compared the performance of the different approaches of the B&B algorithm with
growing datasets and the standard B&B algorithm based on 13 real-world applications from
both literature and our previous works. For the estimation problemswith exact data, the deter-
ministic approach of the B&B algorithm with growing datasets yields the fastest runtimes.
Most of our problems with error-prone data do not converge within the given CPU time
limit. For these models, all approaches, including the standard B&B algorithm, find similar
upper bounds. The SSE heuristics yields the best, i.e., largest, final lower bound for 70% of
the models with noisy data and a similar value as the standard B&B algorithm for 20% of
these models. In turn, the SSE heuristic may introduce an error into the pruning procedure.
However, our results suggest that both the SSE and theMSE heuristic are almost deterministi-
cally converging towards the global solution, where the proposed post-processing procedure
allows to detect and quantify the exceptions from this assumption.

Apart from this, we show in theory that we can likely decrease the variance of the lower
bounds calculated based on reduced datasets when resampling the dataset. However, the
actual numerical performance of the B&B algorithm with growing datasets for the models of
our case study is hardly affected by the use of the resampling heuristic. Since we always fit
a comparatively small number of unknown parameters to a large dataset, we seem to obtain
small variances for the reduced lower boundsmaking resampling techniques like bagging less
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advantageous, cf. [20] and [15, Section 8.2]. Note that the good generalization performance
of our solution of model trainANN, see Online Resource 1, is another indication for having
small variances.

The computational advantage of the B&B algorithm with growing datasets depends on
the choice of the reduced datasets. On the one hand, estimation results based on a reduced
datasetmay be distorted by overfitting or even identifiability issues if the full dataset is already
small compared to the number of unknown parameters. We have shown that applying out-
of-sample estimation allows for tightening the lower bound calculated based on the reduced
dataset. However, if the data reduction is insignificant in absolute numbers, the resulting
computational savings cannot compensate for the remaining gap to the full lower bound.
As a consequence, the B&B algorithm with growing datasets is still outperformed by the
standard algorithm in such cases with small datasets. On the other hand, we expect that the
performance of the B&B algorithm with growing datasets profits from exploiting knowledge
about the dataset for the data reduction. For example, the reduced lower boundmay be a better
fit to the full lower bound if the reduced datasets contain a sufficient amount of measurements
with the largest measurement errors. An extension allowing for user-given reduced datasets
merits therefore careful attention.

Wemake the parameter estimation problems of our case study openly accessible via repos-
itory GloPSE2. In future work, we aim at extending the case study with estimation problems
containing data-dependent constraints, e.g., fitting binary fluid systems with constraints on
themeasuredmole fractions [55] and the optimization of Gaussian processes with constraints
on each of the data points of the training set [56]. For this, we aim at implementing a specific
treatment of data-dependent constraints to allow for an efficient handling of reduced datasets
for these models.

For all computations, we used our open-source solver MAiNGO which uses McCormick
relaxations [43, 44] to calculate convex underestimators for the lower bounding problem.
MAiNGO can therefore efficiently handle reduced-space formulations [2, 54], meaning that
the size of the dataset does not affect the number of optimization variables but solely the com-
putational effort for function evaluations. In contrast to that, many DGO solvers like BARON
[57, 58], ANTIGONE [59], and SCIP [60, 61] use the auxiliary values method (AVM) [6,
62–64] for obtaining convex underestimators. An implementation of the B&B algorihm with
growing datasets in these AVM-based solvers is of high interest since the AVMmethod may
add an auxiliary optimization variable for each of the data points and we therefore expect
AVM-based solvers to profit even stronger from the use of growing datasets.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10898-025-01514-4.
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