001044204 001__ 1044204
001044204 005__ 20250717202255.0
001044204 0247_ $$2doi$$a10.48550/ARXIV.2506.12819
001044204 037__ $$aFZJ-2025-03093
001044204 1001_ $$0P:(DE-HGF)0$$aSchulze, Jan C.$$b0
001044204 245__ $$aNonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison
001044204 260__ $$barXiv$$c2025
001044204 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1752738390_1013
001044204 3367_ $$2ORCID$$aWORKING_PAPER
001044204 3367_ $$028$$2EndNote$$aElectronic Article
001044204 3367_ $$2DRIVER$$apreprint
001044204 3367_ $$2BibTeX$$aARTICLE
001044204 3367_ $$2DataCite$$aOutput Types/Working Paper
001044204 520__ $$aComputationally cheap yet accurate enough dynamical models are vital for real-time capable nonlinear optimization and model-based control. When given a computationally expensive high-order prediction model, a reduction to a lower-order simplified model can enable such real-time applications. Herein, we review state-of-the-art nonlinear model order reduction methods and provide a theoretical comparison of method properties. Additionally, we discuss both general-purpose methods and tailored approaches for (chemical) process systems and we identify similarities and differences between these methods. As manifold-Galerkin approaches currently do not account for inputs in the construction of the reduced state subspace, we extend these methods to dynamical systems with inputs. In a comparative case study, we apply eight established model order reduction methods to an air separation process model: POD-Galerkin, nonlinear-POD-Galerkin, manifold-Galerkin, dynamic mode decomposition, Koopman theory, manifold learning with latent predictor, compartment modeling, and model aggregation. Herein, we do not investigate hyperreduction (reduction of FLOPS). Based on our findings, we discuss strengths and weaknesses of the model order reduction methods.
001044204 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001044204 588__ $$aDataset connected to DataCite
001044204 650_7 $$2Other$$aSystems and Control (eess.SY)
001044204 650_7 $$2Other$$aMachine Learning (cs.LG)
001044204 650_7 $$2Other$$aDifferential Geometry (math.DG)
001044204 650_7 $$2Other$$aDynamical Systems (math.DS)
001044204 650_7 $$2Other$$aOptimization and Control (math.OC)
001044204 650_7 $$2Other$$aFOS: Electrical engineering, electronic engineering, information engineering
001044204 650_7 $$2Other$$aFOS: Computer and information sciences
001044204 650_7 $$2Other$$aFOS: Mathematics
001044204 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b1$$eCorresponding author$$ufzj
001044204 773__ $$a10.48550/ARXIV.2506.12819
001044204 909CO $$ooai:juser.fz-juelich.de:1044204$$pVDB
001044204 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001044204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b1$$kFZJ
001044204 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b1$$kRWTH
001044204 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001044204 9141_ $$y2025
001044204 920__ $$lyes
001044204 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001044204 980__ $$apreprint
001044204 980__ $$aVDB
001044204 980__ $$aI:(DE-Juel1)ICE-1-20170217
001044204 980__ $$aUNRESTRICTED