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 A B S T R A C T

The increasing interest in demand-side management (DSM) as part of the energy cost optimization calls 
for effective methods to determine representative electricity prices for energy optimization and scheduling 
investigations. We propose a practical method to construct price profiles of day-ahead (DA) and intraday (ID) 
electricity spot markets. We construct single-day and single-week price profiles based on historical market 
time series to provide ready-to-use price data sets. Our method accounts for dominant mechanisms in price 
variation to preserve critical statistical features (e.g., mean and standard deviation) and transient patterns in 
the constructed profiles. Unlike common scenario generation approaches, the method is deterministic, with 
few degrees of freedom and minimal application effort. Our method ensures consistency between ID and DA 
price profiles when both are considered and introduces profile scaling to enable multiple scenario generation. 
Finally, we compare the constructed profiles to clustering techniques in a DSM case study, noting similar cost 
results.
1. Introduction

Optimization of energy costs has long been acknowledged as a topic 
of interest for the economic design and operation of chemical processes 
and energy systems (Friedler, 2010). Demand-side management (DSM) 
and demand response (DR) are energy-flexible operation paradigms 
that have raised interest of industrial consumers to actively participate 
in the energy spot markets by adjustment of electricity demand (Pinson 
et al., 2014; Mitsos et al., 2018). With electricity prices on European DA 
spot markets having reached peak values as high as 4000e/MWh (Nord 
Pool, 2023), the importance of industrial DSM is expected to grow 
further in the near future. Thus, economic studies on planning and 
scheduling of industrial processes necessitate a systematic way to select 
up-do-date electricity price scenarios. On the other hand, the process 
of selecting a price scenario should not distract from the main purpose 
of a scientific study on DSM. Thus, we herein propose a user-friendly 
intuitive approach to determine standard price profiles. Notice that we 
use the terms ‘‘price profiles’’ and ‘‘prices time series’’ interchangeably.

Publications on DSM of industrial processes, including our own 
studies, such as Caspari et al. (2019), Mucci et al. (2023) and El Wajeh 
et al. (2024), heavily rely on the chosen electricity price profiles that 
must represent current trends and allow for generalizable conclusions. 

∗ Corresponding author at: Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany.
E-mail address: amitsos@alum.mit.edu (A. Mitsos).

1 Both authors contributed equally to this work.

Selecting a single historical profile or averaging historical data favors 
simplicity, and is essential in cases of computationally expensive cal-
culations (e.g., Papadimitriou et al. (2023)), or a case study number 
that scales significantly with the number of price scenarios considered 
(e.g., Kelley et al. (2020)). Clearly, averaged price trends do not fully 
capture all features of historical profiles, as price averaging yields a 
single and exclusive price scenario. Additionally, data averaging does 
not account for the temporal evolution of prices to consider future price 
trends. Nonetheless, simple and sufficiently representative price pro-
files are usually adequate for evaluation of the theoretical potential of 
DR applications. Conversely, sophisticated scenario generation methods 
provide multiple price scenarios. These scenarios are rather valuable 
for active market participation, though less suitable for generalizable 
results on the considered DR method. Yet, these methods involve a 
more complex implementation, while forecasts of the long-term price 
trends are still subject to high uncertainty. Moreover, an extensive 
evaluation of all possible price scenarios, product demand situations, 
and other possible operating disturbances quickly results in a curse of 
dimensionality and is thus often beyond the scope of research studies 
on DR.

We propose a price scenario generation method, by considering two 
key price components of widely considered DR, namely the auction 
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day-ahead (DA) and the real-time intraday (ID) electricity spot market. 
In order to decide on the time horizon of the generated price profiles, 
we note that in most related studies single-day or single-week price pro-
files are utilized, while less frequently longer horizons of historical data 
(e.g., up to one year) may be applied (Meese et al., 2016). The daily 
and weekly frequencies match the dominant patterns of the DA and ID 
price fluctuation identified in our previous studies (Schäfer et al., 2020; 
Germscheid et al., 2022). We can thus extend the previously introduced 
averaging techniques to construct single-day and single-week DA and 
ID electricity price profiles.

Herein, we aim to establish a simple method to construct mean-
ingful and representative DA and ID ready-to-use price profiles to 
be used within future economic studies, e.g., cost optimal planning 
and scheduling, power-to-X, and energy-flexible design and operation. 
Within this method, we desire an option to allow consistency of the 
DA and ID prices, which is useful for DR across multiple electricity 
markets, e.g., in bidding strategies (Silva et al., 2022), or scheduling 
and control (Caspari et al., 2020). This ensures that the absolute DA 
and ID price values of a selected price scenario do not naïvely favor a 
certain DR strategy. An example of the effect of a systematic shift of DA 
and ID prices is given in our recent work (Schulze et al., 2024), where 
flexible operation in the more volatile ID market appears less profitable 
than in the DA market, because of higher ID price values.

This property is not provided by existing methods, e.g., Maciejowska 
et al. (2019) and Teichgraeber and Brandt (2019). The developed price 
profile will exhibit the following essential properties:

1. Method simple to understand, deterministic, and few parame-
ters, 

2. Evolution of electricity prices closely represents current price 
trends,

3. Consistency of DA and ID price profiles, 
4. Magnitude of price fluctuations is adjustable (scalable), while 
1.–3. still hold. 

To achieve the desired properties, we base our method on previous 
works on constructing average price profiles (Schäfer et al., 2020; 
Germscheid et al., 2022) and introduce adaptations tailored to the 
applications investigated. Because the focus of DR studies is on the 
economic potential of electricity price fluctuations rather than steady-
state optimization, the price variance over the investigation period is 
assumed to hold greatest importance for optimal economic decision-
making (Mathaba et al., 2014). Thus, our method allows for adjusting 
the magnitude of fluctuations in the price profile. Additionally, we 
ensure consistency of the DA and ID scenarios based on the near-zero 
mean distribution of the ID-DA deviation by equalizing the integrated 
DA and ID prices over the designated period. To underpin this ap-
proach, we provide statistical analyses of hourly DA and quarter-hourly 
real-time ID prices in historical data from European spot markets. 
Our approach can extend to other markets and price granularities 
(e.g., half-hourly) where similar observations hold.

In the remainder of this article, we first present state-of-the-art 
approaches on electricity price scenario generation for DSM (Section 2). 
Subsequently, we introduce a method for constructing a practical 24-
h DA price profile from historical data of the last available 365 days 
(Section 3.1). Next, we utilize the same historical data to extract the ID 
price profile, based on ID - DA price deviations (Section 3.2). Then, we 
introduce a few modifications and apply the same approach to generate 
single-week (Section 4) practical profiles. We further create ready-to-
use2 DA and ID price profiles for future studies on DSM on the different 
time-scales presented and compare to historical data (Section 5). Last, 
we present a DR case study to contrast our method and state-of-the-art 
price generation techniques in terms of cost results (Section 6).

2 The open-access data sets are provided via Git (Link).
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2. State of the art

Next, we review state-of-the-art techniques for electricity price sce-
nario selection or generation. An overview of the presented methods 
is shown in Table  1, together with exemplary works of electricity 
price consideration. While not exhaustive, the presented classification 
covers the most common price generation methods and aligns with the 
objectives of our framework.

The most straightforward approach is to use recent historical pro-
files as scenarios. Several studies consider a single historical profile, 
e.g., 24 h, that exhibits a typical behavior in terms of the price range 
and transient patterns (Dalle Ave et al., 2019). The authors then 
expect the findings to generalize well. Other works consider several 
different historical profiles commonly representing different extreme 
scenarios in their DSM application to highlight a range of the expected 
results (Caspari et al., 2020; Brée et al., 2019). Especially when studies 
on production design and planning are performed, a higher number 
of historical price profiles can be selected to capture the effect of 
different fluctuation patterns (Fürsch et al., 2013). The above scenario 
generation strategies are based on the use of raw historical data, yield-
ing realistic results of the DSM application while keeping the number 
of scenarios low. However, they usually proceed ad-hoc, resulting in 
challenges for the representativity and generalizability of case study 
results.

A more sophisticated approach to determine characteristic periods 
in time-series data is time series aggregation (TSA) (Hoffmann et al., 
2020). Within this category, the clustering of historical price data is a 
commonly used technique. Historical price clustering provides a set of 
price profiles that represent the entity of the historical data (Poncelet 
et al., 2017). All clustering techniques involve three core steps (Te-
ichgraeber and Brandt, 2019). First, clustering criteria are defined to 
span the clustering space. For high-dimensional data vectors, e.g., price 
profiles, common low-dimensional clustering criteria include the mean 
and standard deviation of the data point (Wang et al., 2006). The vector 
of clustering criteria then represents the clustering candidates associ-
ated to original data vectors. Second, the distance between candidate 
cluster members and candidate cluster center is minimized to determine 
clusters and associated center points. Third, the cluster representative 
(characteristic profile) is derived from the cluster members.

The most common clustering strategies are 𝑘-means clustering, 𝑘-
medoids clustering, and hierarchical clustering. A 𝑘-means clustering 
starts by randomly selecting 𝑘 cluster centers. Each cluster center is 
the mean, termed centroid, of the cluster members assigned to the 
cluster. Further, the cluster representative price profile is the mean 
of the profiles corresponding to the cluster (Jain, 2010). In 𝑘-medoids 
clustering, the most central cluster member, called medoid, is the center 
and derives the representative profile (Kaufman and Rousseeuw, 2009). 
Hierarchical clustering begins with single-member clusters that are 
iteratively merged using centroids as cluster centers. The cluster rep-
resentatives are either defined as medoids or centroids (Nahmmacher 
et al., 2016; Teichgraeber and Brandt, 2019). Kotzur et al. (2018) 
compare different clustering techniques for price scenario generation 
applied to optimal process design. Furthermore, Wang et al. (2006) 
explore different clustering criteria to enhance clustering performance.

Although clustering reduces the number of scenarios compared to 
the original time series, multiple clusters within a DR study require 
multiple scheduling problems to be solved. Clustering techniques pro-
vide a more systematic way for historical profile selection compared to 
applying user-specified criteria with high degree of freedom. However, 
numerous options exist for configuring clustering methods. One such 
option is data scaling, which is essential for time-series clustering and 
can significantly impact results (Rager, 2015), but is not required for 
averaging and moment-matching techniques. Yet, the clustering results 
are only optimal with respect to the chosen criteria. In other words, the 
price profiles associated with cluster centers are the best representatives 
with respect to the chosen criteria, but they do not necessarily yield 

https://git.rwth-aachen.de/avt-svt/public/representative-electricity-price-profiles
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good results when applied to a DR case study. This can occur when 
employing too few criteria and risking loss of critical information. 
Conversely, using too many criteria can dilute specificity and produce 
profiles far from the average expected performance.

In an effort to enhance clustering performance, hybrid techniques 
that combine time-series feature extraction, such as principal com-
ponent analysis (PCA), together with (machine learning) clustering 
techniques have been introduced for similar applications (e.g., load 
profiles) to capture underlying patterns and improve clustering (Al-
maimouni et al., 2018). Besides PCA, factor analysis methods are 
used to uncover latent factors and explain data variability. Examples 
include latent Dirichlet allocation (Chen et al., 2022) and autoen-
coder networks, e.g., variational autoencoders (Wang et al., 2022). 
Similarly, generative AI approaches like generative adversarial net-
works (Yilmaz et al., 2024) or jump-diffusion models (Meyer-Brandis 
and Tankov, 2008) can produce realistic data by learning the under-
lying data distribution. These methods can capture complex, nonlinear 
relationships and generate diverse, realistic profiles. However, they re-
quire increased computational complexity and careful tuning compared 
to moment-matching techniques.

An alternative way to produce practical price scenarios using histor-
ical data is to construct average price profiles over a historical period 
that respects fundamental characteristics of the spot market price pro-
files. Knittel and Roberts (2005) identify electricity price trends on 
different time scales highlighting recurring patterns and characteristic 
values of the price time series. Rahimiyan and Baringo (2016) perform 
a statistical analysis on historical DA and ID price data to quantify the 
price correlations. Röder et al. (2024) construct an average DA profile 
through permutation of the price elements of historical profile data 
together with averaging applicable to flexible operation for price peak 
avoidance. Schäfer et al. (2020) and Germscheid et al. (2022) utilize 
Fourier transforms to analyze principal frequencies of historical DA 
prices and ID-DA price deviations, respectively, identifying dominant 
modes at periods of 0.5 day and 1day. By averaging one year of 
historical DA and ID price data, significant time-series frequencies, such 
as daily or weekly, are taken into account to construct a single profile. 
These periods correspond to significant price patterns and price fluctu-
ations that can be exploited by most processes. The averaging method 
is straightforward to implement compared to clustering techniques and 
provides a single scenario. However, the approach may over-smooth 
the data and potentially obscure certain less prominent trends.

Finally, we mention probabilistic forecasting techniques, which 
exploit correlations of predicted parameters (e.g., weather forecasts) 
and are widely used to explain price behavior (Nowotarski and Weron, 
2018). Following (Monteiro et al., 2018) and Weron (2014), these 
methods can be categorized into prediction interval, density, and 
threshold forecasting. Univariate and multivariate probabilistic models 
are prevalent electricity price forecasting methods (Cuaresma et al., 
2004; Rahimiyan and Baringo, 2016), but machine learning approaches 
like normalizing flows are also gaining attention (Cramer et al., 2023). 
Electricity prices forecasts enable DR computations in future appli-
cations, offering advantages over historical data, especially for long 
horizons and volatile markets (Nowotarski and Weron, 2018). Unlike 
data-averaging techniques, price forecasting methods are not restricted 
to representing data of the present and recent past. Instead, forecasting 
can incorporate trends of the future, although commonly restricted 
to the use of historical data and small forecasting windows (Alonso 
et al., 2016; Shah et al., 2021). Notably, however, both historical 
data based as well as complex scenario forecasting methods have 
been rather inaccurate at predicting the long-term evolution of elec-
tricity prices (Zareipour et al., 2010; Weron, 2014; Gabrielli et al., 
2022), since this evolution is subject to policy changes and political 
events (Yang et al., 2017). At the same time, although practical for 
real-life application of DSM strategies, such as optimal bidding in a 
wholesale energy market (Zhang et al., 2020), price forecasts refer to a 
very specific time period in the future. They may therefore not provide 
3 
a basis for generalizable conclusions when assessing the potential of an 
introduced DR case study.

In conclusion, we find all methods to be either fairly involved or 
subject to individual user decisions or randomness, i.e., non-
deterministic. Hence, we aim to provide a simple yet systematic and 
deterministic method for constructing single-day and single-week elec-
tricity price scenarios based on historical time series data. Such a 
method shall involve few tuneable parameters and request little imple-
mentation effort. In the next section, we propose such a method based 
on averaging.

3. Single-day price profile

In this section, we present the methodology for constructing repre-
sentative single-day DA (Section 3.1) and ID (Section 3.2) price profiles 
using a full-year time-series data set.

3.1. DA price profile

We begin with the construction of the DA profile of one representa-
tive day. To this end, we select a price data set of 365 consecutive days 
to exclude seasonal effects (Knittel and Roberts, 2005). The 365 days 
horizon may be chosen arbitrarily and if desired extended to multiple 
years. We remark that incidents and trends contained in the price data 
set, e.g., caused by political events and developments, will affect the 
price scenario created. Here, we use up-to-date price values of the full 
year 2023. Similar to our prior works (Schäfer et al., 2020; Germscheid 
et al., 2022), we first average the historical DA prices for every day 
hour, 𝑘 = 1,2,… ,24, individually3: 

𝐷𝐴𝑘 = 1
𝑁

𝑁
∑

𝑖=1
𝐷𝐴𝑖,𝑘 , (1)

where 𝑁 = 365 is the number of days of selected historical data, 𝐷𝐴𝑖,𝑘
is the DA price at hour 𝑘 of day 𝑖 = 1,2,… , 𝑁 , and 𝐷𝐴𝑘 is the average 
DA price of hour 𝑘. If desired, days with significant outliers, weekends 
or holidays may be excluded. However, here we consider the full year.

Next, we calculate the overall mean value 𝐷𝐴:

𝐷𝐴 = 1
24

24
∑

𝑘=1
𝐷𝐴𝑘 ,

which is also the mean over all historical data. To facilitate the adjust-
ment of the price fluctuation around the mean value (see Requirement 
4), i.e., variance scaling, we introduce a scaling factor 𝛽 > 0. This aspect 
extends our prior works. We scale all 𝐷𝐴𝑘 around 𝐷𝐴 by 𝛽: 

𝐷𝐴
𝛽
𝑘 = 𝐷𝐴 + 𝛽 ⋅ (𝐷𝐴𝑘 −𝐷𝐴) . (2)

Clearly, setting 𝛽 = 1 corresponds to no scaling and practically repre-
sents the centroid profile derived by any clustering technique which 
applies a single cluster and derivation of the representative profiles 
with centroids. The resulting scenario exhibits low deviating behav-
ior according to the historical data (Fig.  2). It could thus serve as 
a price scenario of moderate fluctuations. Such an averaging-out of 
the data variation is also observed in centroid clustering methods, 
like 𝑘-means clustering (Kotzur et al., 2018; Schütz et al., 2018). To 
minimize scenario complexity, we can thus use the 𝛽 = 1-profile as an
Unscaled scenario. Importantly, the mean value 𝐷𝐴 remains identical 
irrespective of scaling.

Therefore, as the daily standard deviation of the average profile 
does not represent the daily standard deviation of all data due to 
smoothing of the data (Schäfer et al., 2020), we use 𝛽 to correct the 

3 Notice that for 𝑘 ≥ 2, Eq. (1) may be equivalently rewritten as 𝐷𝐴𝑘 =
𝐷𝐴𝑘−1 + 𝛥𝐷𝐴𝑘, where 𝛥𝐷𝐴𝑘 = 1∕𝑁 ∑𝑁

𝑖=1 (𝐷𝐴𝑖,𝑘 −𝐷𝐴𝑖,𝑘−1). Hence, this profile 
captures the moving average price development over a day.
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Table 1
Overview of the presented state-of-the-art techniques for electricity price scenario consideration. We distinguish between 
‘‘historical’’ (real data) and ‘‘artificial’’ (synthetically generated) profiles, ‘‘multiple’’ or ‘‘single’’ number of generated profiles, 
and ‘‘past’’ or ‘‘future’’ represented time windows or price realization.
 Technique Key Derived Derived References  
 features price profile  
 datasets window  
 
Recent prices

Price data Historical,

Past

Dalle Ave et al. (2019),  
 qualitative/ single/ Caspari et al. (2020),  
 quantitative multiple Brée et al. (2019),  
 selection Fürsch et al. (2013)  
 
Clustering

𝑘-means, Historical/
Past

Kotzur et al. (2018),  
 𝑘-medoids, artificial, Poncelet et al. (2017),  
 hierarchical multiple Teichgraeber and Brandt (2019)  
 Hybrid 
clustering

Feature Historical/
Past

Almaimouni et al. (2018)  
 extraction artificial, Yilmaz et al. (2024)  
 & clustering multiple Meyer-Brandis and Tankov (2008)  
 
Averaging

Of one-year Artificial, 
single Past

Röder et al. (2024)  
 historical Germscheid et al. (2022)  
 data Schäfer et al. (2020)  
 Prediction

Future

Nowotarski and Weron (2018)  
 interval, Monteiro et al. (2018)  
 Probabilistic density, Artificial, Weron (2014), Zhang et al. (2020) 
 forecasting threshold, single Cramer et al. (2023)  
 univariate, Cuaresma et al. (2004)  
 multivariate Rahimiyan and Baringo (2016)  
Fig. 1. Average (Unscaled) and scaled average (𝛽 = 1.47) (Nominal) 24-h DA price profile generated from historical 2023 data (EPEX, 2023).
averaged results. This allows to preserve a key time-series property 
critical for DR applications, namely the magnitude of price deviation. 
Thus, in order to obtain a Nominal ready-to-use profile, we choose 𝛽
such that:

𝜎(𝐷𝐴
𝛽
1,… , 𝐷𝐴

𝛽
24) =

1
𝑁

𝑁
∑

𝑖=1
𝜎(𝐷𝐴𝑖,1,… , 𝐷𝐴𝑖,24) ,

i.e., the standard deviation 𝜎 of the resulting scaled price profile 
matches the average standard deviation of the daily DA price profiles. 
We insert the definition of the standard deviation:
√

√

√

√
1
24

24
∑

𝑘=1
(𝐷𝐴

𝛽
𝑘 −𝐷𝐴)2 = 1

𝑁

𝑁
∑

𝑖=1

√

√

√

√

√

1
24

24
∑

𝑘=1

(

𝐷𝐴𝑖,𝑘 −
1
24

24
∑

𝑗=1
𝐷𝐴𝑖,𝑗

)2

and obtain an explicit solution after mathematical reformulation:

𝛽 = 1
𝑁

𝑁
∑

𝑖=1

√

√

√

√

√

∑24
𝑘=1

(

𝐷𝐴𝑖,𝑘 −
1
24

∑24
𝑗=1𝐷𝐴𝑖,𝑗

)2

∑24
𝑘=1(𝐷𝐴𝑘 −𝐷𝐴)2

.

For example, for the full year 2023 and EPEX spot market, we receive 
the value 𝛽 = 1.47. The resulting DA profile is illustrated by Fig.  1. 
4 
Here, the characteristic double peak profile is visible with minimal 
values occurring during the 4th and 14th hour as well as maximal 
values during the 8th and the 19th. The absolute price range after 
scaling (𝛽 = 1.47) is 103.46 e∕MWh with a mean value of 𝐷𝐴 =
95.18 e∕MWh.

If a more distinct price variation is desired, we can specify a 
larger value of 𝛽. In order to systematically choose a larger 𝛽 factor 
that corresponds to some extreme behavior of the historical data (Re-
quirement 2), we represent the density distribution of the standard 
deviations 𝜎(𝐷𝐴𝑖,1,… , 𝐷𝐴𝑖,24) across all days 𝑖 = 1,2,… , 𝑁 through 
a histogram, Fig.  2. Subsequently, we identify a quantile indicative 
of high fluctuations within the historical data. We exemplary show 
the quantile 3.4 (𝑄3.4), corresponding to the 15% highest values of 
the daily standard deviations, Fig.  2. The value of the quantile is the 
corresponding standard deviation, namely:

𝜎(𝐷𝐴
𝛽
,… , 𝐷𝐴

𝛽
) = 𝑄

(

{𝜎(𝐷𝐴 ,… , 𝐷𝐴 )}𝑁
)

,
1 24 3.4 𝑖,1 𝑖,24 𝑖=1
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Fig. 2. Distribution histogram of daily DA price standard deviation. Based on historical data of year 2023.
satisfied for:

𝛽 =
𝑄3.4

(

{𝜎(𝐷𝐴𝑖,1,… , 𝐷𝐴𝑖,24)}𝑁𝑖=1
)

√

1
24

∑24
𝑘=1(𝐷𝐴𝑘 −𝐷𝐴)2

,

giving 𝛽 = 1.97 for the full year 2023. Other options could include 
the choice of a preset high value, e.g., as an expression of the scaling 
parameter 𝛽 that corresponds to the Nominal profile. Conversely, for 
a less aggressive profile, we may set 𝛽 < 1 to match, e.g., 𝑄0.8 (of 
the 20% least deviating historical data). The use of such variations on 
the averaged profile variance enables various different scenarios to be 
used in a DR case study. Examples are optimal design and scheduling, 
where a sensitivity analysis over the prices allows to determine limits 
in equipment oversizing (e.g., Röder et al. (2024)).

3.2. ID price profile

We proceed with generating an average ID profile by first exploring 
the relationship between DA and ID prices, followed by the construction 
of an ID profile based on a DA reference. Rahimiyan and Baringo 
(2016) assessed the correlation between DA and ID prices, pinpointing 
uncorrelated DA price and market deviation (also referred to as DA-
ID price deviation or residual price). As noticed by Germscheid et al. 
(2022), the ID price oscillates around the DA price in a well-defined, 
season-independent harmonic pattern with dominant frequencies at 
0.5 h−1 and close to 1 h−1. We perform a similar analysis for the DA 
prices and the ID-DA deviation of 2023 (frequency spectra provided 
in the SI) that confirms the observations of Germscheid et al. (2022). 
Consequently, ID profiles may be constructed by first subtracting ID and 
DA data and then using this market deviation to construct a harmonic 
deviation profile. Here, we build on these findings and introduce some 
further refinements. We consider the ID3 price index, which is the 
volume-weighted average price of all trades that took place within the 
last three hours before delivery (EPEX, 2023).

We first calculate the average market deviation of ID around the 
DA profile for each 15min interval of the historical data (𝛥𝐼𝐷

𝑞 ) similar 
to Germscheid et al. (2022): 
𝛥𝐼𝐷
𝑖,𝑞 = 𝐼𝐷𝑖,𝑞 −𝐷𝐴𝑖,⌈𝑞∕4⌉ ,

𝛥
𝐼𝐷
𝑞 = 1

𝑁

𝑁
∑

𝑖=1
𝛥𝐼𝐷
𝑖,𝑞 ,

(3)

where 𝑞 = 1,… ,96 is the quarter hour index, 𝐼𝐷𝑖,𝑞 is the ID price on 
day 𝑖 and quarter hour 𝑞, and ⌈ ⋅ ⌉ denotes the ceiling operation utilized 
to translate from quarter hour index 𝑞 to corresponding hour index 𝑘. 
Fig.  3 shows an exemplary profile of 𝛥𝐼𝐷 based on the full year 2023. 
𝑞

5 
Therein, we observe the deviation of an hourly pattern as indicated 
by a Fourier analysis (Germscheid et al., 2022). Notably, large jumps 
in the price deviation occur at full hours, typically involving a change 
of sign. Moreover, we observe phase shifts at hours 3, 7, 13, and 19, 
where the inner hour trend switches between continuously increasing 
and decreasing. Next, a straightforward approach for constructing an 
ID profile would be: 

𝐼𝐷𝑞 = 𝐷𝐴
⌈𝑞∕4⌉ + 𝛥

𝐼𝐷
𝑞 (4)

However, to meet Requirement 3 we refine this approach by imposing 
the additional condition of zero cumulative market deviation: 
96
∑

𝑞=1
𝛥
𝐼𝐷
𝑞 = 0 , (5)

such that the cumulative prices of the DA and ID profiles will be 
identical. Fig.  4(a) reveals that the daily cumulative deviation scaled 
by the daily cumulative DA price in 2023 is approximately symmet-
rically distributed around zero, which supports Eq. (5). Moreover, 
even the hourly integral of the ID to DA price deviations scaled by 
the hourly cumulative DA price appears to be symmetric around zero 
mean, Fig.  4(b). This observation is consistent with the dominant 
harmonic frequencies at 0.5 h−1 and 1 h−1 mentioned above. We found 
similar distributions for the years 2019 to 2022 (figures omitted for 
brevity). The distributions, although approximately zero-mean, exhibit 
significant deviations. Hence, they only valid to first order.

Because the distribution in Fig.  4(a) is, however, not perfectly 
Gaussian and exhibits non-zero mean (2.23e/MWh, also see Fig.  3), 
Eq. (3) does not satisfy the consistency requirement (Eq. (5)). Hence, 
we modify the approach and extend Eq. (4) by an offset correction term 
to obtain: 

𝛥𝐼𝐷
𝑞 = 𝛥

𝐼𝐷
𝑞 − 1

96

96
∑

𝑞=1
𝛥
𝐼𝐷
𝑞 . (6)

We notice that the correction approach may be further refined based 
on the zero-mean distribution in Fig.  4(b). However, we decide against 
such an additional refinement to keep the method simple. We remark 
that analysis of the years 2019 to 2022 revealed both positive and 
negative correction terms of smaller orders of magnitude compared 
to 2023 (2.23e/MWh). This indicates that the correction assumption 
is generally valid and introduces minimal changes to the averaged 
historical data. Next, similar to 𝛽 for the DA profile, we scale 𝛥𝐼𝐷

𝑞
by a parameter 𝛾 > 0 to match the year-average of the ID standard 
deviations: 

𝜎(𝐼𝐷
𝛾
1..., 𝐼𝐷

𝛾
96) =

1 𝑁
∑

𝜎(𝐼𝐷𝑖,1,… , 𝐼𝐷𝑖,96) , (7)

𝑁 𝑖=1
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Fig. 3. Average ID-DA price deviation 𝛥𝐼𝐷
𝑞  for the full year 2023. Mean value indicated by dashed line.
Fig. 4. Distribution histogram of relative cumulative daily (a) and hourly (b) deviation of ID and DA prices. Based on historical data of year 2023.
wherein the constructed ID profile is calculated as:
𝐼𝐷

𝛾
𝑞 = 𝐷𝐴

𝛽
⌈𝑞∕4⌉ + 𝛾𝛥𝐼𝐷

𝑞 , 𝑞 = 1,… ,96 .

The parameter value 𝛾 corresponding to the Nominal profile is specified 
by solving the implicit nonlinear equation with 𝛽 fixed: 
√

√

√

√

√

96
∑

𝑞=1
(𝛽(𝐷𝐴

⌈𝑞∕4⌉ −𝐷𝐴) + 𝛾𝛥𝐼𝐷
𝑞 )2 = 1

𝑁

𝑁
∑

𝑖=1

√

√

√

√

√

96
∑

𝑞=1

(

𝐼𝐷𝑖,𝑞 −
1
96

96
∑

𝑞=1
𝐼𝐷𝑖,𝑞

)2 .

(8)

Eq. (8) is readily solved numerically, e.g., using Microsoft Excel. For 
the full year 2023, we determine 𝛾 = 1.91.

Again, we may adjust the fluctuation magnitude of an ID profile 
around its DA reference through a modification of 𝛾. For example, when 
specifying 𝛾 such that the standard deviation matches the quantile 3.4 
of the historical ID standard deviation density distribution: 

𝑄3.4
(

{𝜎(𝐼𝐷𝑖,1,… , 𝐼𝐷𝑖,96)}𝑁𝑖=1
)

= 𝜎(𝐼𝐷
𝛾
1,… , 𝐼𝐷

𝛾
96)

=

√

√

√

√

√

1
96

96
∑

𝑞=1
(𝛽(𝐷𝐴

⌈𝑞∕4⌉ −𝐷𝐴) + 𝛾𝛥𝐼𝐷
𝑞 )2 ,

(9)

we obtain 𝛾 = 1.77 for 2023. We here note that although the 𝛾-value 
in the Extreme scenario is smaller than that of the Nominal scenario, 
6 
the overall deviation in the Extreme ID profile is higher, due to the 
higher 𝛽-value of the Extreme DA profile taking part in the calculations 
(Eq. (9)). Similar to the DA prices, larger and smaller values of 𝛾 create 
more aggressive and less aggressive ID profile, respectively.

Fig.  5 illustrates the final single-day Nominal ready-to-use DA and 
ID profile based on full year 2023 data and for 𝛽 = 1.47 and 𝛾 =
1.91. For the DA profile we note that prices exhibit a daily minimum, 
coinciding with peak photovoltaic generation around noon (Schäfer 
et al., 2020; Kiesel and Paraschiv, 2017). Prices start rising around 
6:00, when the workday begins and start falling around 18:00 when 
the workday ends. Two price peaks around 7:00 and 18:00 denote 
a high electricity demand meeting a low renewable energy supply 
from photovoltaics (Knittel and Roberts, 2005). On the other hand, ID 
prices drop subhourly between 07:00 to 13:00 and 19:00 to 03:00 and 
rise in the meantime. Namely, while the sun is rising (from 07:00 to 
13:00), offer is higher than the hourly average demand and thus price 
is lower in the last quarter of the hour. During afternoon hours (from 
13:00 to 19:00), the offer is higher in the first quarter of the hour. 
Further, during offpeak hours (from 19:00 to 07:00) the oscillation of 
the average ID price follows the demand of power-intensive industry 
(decreasing steps), and the production design of the fossil power plants 
(increasing steps) for minimum production regulations (Kiesel and 
Paraschiv, 2017).
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Fig. 5. Nominal (𝛽 = 1.47, 𝛾 = 1.91) single-day DA and ID price profile for year 2023 (EPEX, 2023).
4. Single-week price profile

In this section, we adjust the methodology presented in the previous 
sections to generate single-week DA (Section 4.1) and ID (Section 4.2) 
price profiles from the full-year time-series data set.

4.1. DA price profile

Commonly, the time horizon of planning and scheduling spans more 
than one day of operation. In some cases, a periodic scenario is suffi-
cient, wherein the price profile is duplicated for multiple consecutive 
days. However, if distinct prices are desired, the procedure from the 
previous section can be extended to price scenarios comprising multiple 
days. Here, we construct such a price profile for a one-week time 
window. The choice of this horizon length aligns with the significant 
DA price frequencies pinpointed by Germscheid et al. (2022), allowing 
us to capture and average over weekly patterns. However, we do not 
recommend to apply the averaging method to construct time frames 
longer than a week. In that case, the averaging would involve either 
statistically too small historical data sets (for 𝑁 = 365) or data sets 
spanning more than a year and thus including long-term changes of 
market dynamics and policy. However, one remedy to construct a 
profile spanning multiple weeks could be the periodic repetition of the 
averaged profile.

Following the approach presented in Section 3.1, we first average 
the historical DA prices for every hour 24𝑑 + 𝑘 = 1,2,… ,168 of the 
week after splitting the available data in an integer number of full 
weeks 𝑊  (Monday to Sunday), so that 7 ⋅𝑊 ⩽ 𝑁 :

𝐷𝐴24𝑑+𝑘 = 1
𝑊

𝑊
∑

𝑤=1
𝐷𝐴(𝑑+1)+7(𝑤−1),𝑘 ,

where 𝑑 = 0,1,… ,6 indicates the day of the week 𝑤 = 1,… ,𝑊
(e.g., Monday corresponds to 0), 𝑘 = 1,2,… ,24 denotes the hour of 
the day and 24𝑑 + 𝑘 is the hour of the constructed single-week profile. 
Similar to Section 3.1 we use the hourly data of 2023, thus considering 
𝑊 = 52.

We next calculate the overall mean value:

𝐷𝐴 = 1
168

24
∑

𝑘=1

6
∑

𝑑=0
𝐷𝐴24𝑑+𝑘 ,

and scale the profile as in Eq. (2) by factor 𝛽:

𝐷𝐴
𝛽

= 𝐷𝐴 + 𝛽 ⋅ (𝐷𝐴 −𝐷𝐴) .
24𝑑+𝑘 24𝑑+𝑘
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For the construction of a Nominal profile, 𝛽 is selected such that the 
standard deviation of the constructed single-week profile is equal to 
the average standard deviation of all weekly profiles of the historical 
data:

𝜎(𝐷𝐴
𝛽
1,… , 𝐷𝐴

𝛽
168)

= 1
𝑊

𝑊
∑

𝑤=1
𝜎(𝐷𝐴7𝑤−6,1,… , 𝐷𝐴7𝑤−6,24, 𝐷𝐴7𝑤−5,1,… , 𝐷𝐴7𝑤,24) ,

which leads to the explicit 𝛽 expression: 

𝛽 = 1
𝑊

𝑊
∑

𝑤=1

√

√

√

√

√

∑6
𝑑=0

∑24
𝑘=1

(

𝐷𝐴(𝑑+1)+7(𝑤−1),𝑘 −
1
168

∑6
𝑑=0

∑24
𝑘=1𝐷𝐴(𝑑+1)+7(𝑤−1),𝑘

)2

∑6
𝑑=0

∑24
𝑘=1(𝐷𝐴24𝑑+𝑘 −𝐷𝐴)2

.

(10)

For more extreme price fluctuations, we select 𝛽 so that the standard 
deviation of the constructed profile is equal to the quantile 3.0 value 
of the density distribution: 

𝛽 =
𝑄3.0

(

{𝜎(𝐷𝐴7𝑤−6,1,… , 𝐷𝐴7𝑤−6,24, 𝐷𝐴7𝑤−5,1,… , 𝐷𝐴7𝑤,24)}𝑊𝑤=1
)

√

1
168

∑6
𝑑=0

∑24
𝑘=1(𝐷𝐴24𝑑+𝑘 −𝐷𝐴)2

.

(11)

We here use a smaller quantile compared to the one selected in Sec-
tion 3.1, because weeks with extremely varying prices do not usu-
ally follow the nominal fluctuating pattern, see also figures of the 
supplementary information (SI).

Considering the EPEX Spot DA market data for the year 2023, 
Eq. (10) gives 𝛽 = 1.58, and Eq. (11) 𝛽 = 1.76. More or less aggressive 
profiles are again obtained by adjusting the parameter 𝛽.

4.2. ID price profile

We extend our methodology on extracting a practical ID profile 
directly following the analysis in Section 3.2 to compose the ID profile 
over a one-week horizon by superposing the average ID-DA price devi-
ation with the average DA price over a single-week period. Therefore, 
we first calculate the average market deviation of the historical data:

𝛥
𝐼𝐷
96𝑑+𝑞 =

1
𝑊

𝑊
∑

𝑤=1

(

𝐼𝐷(𝑑+1)+7(𝑤−1),𝑞 −𝐷𝐴(𝑑+1)+7(𝑤−1),⌈𝑞∕4⌉
)

,

where 𝑞 = 1,… ,96 is the quarter hour index, 𝐼𝐷(𝑑+1)+7(𝑤−1),𝑞 is the ID 
price on week 𝑤, day of the week 𝑑 and quarter hour 𝑞.
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As opposed to the hourly and daily historical profiles, the weekly 
profiles do not show a zero-mean distribution of the weekly cumulative 
ID-DA deviation. Thus, a zero-mean correction for the full week as in 
Eq. (6) is not expedient here. Instead, we apply Eq. (6) separately for 
each of the seven days of the week to enforce a daily closure:
96
∑

𝑞=1
𝛥
𝐼𝐷
96𝑑+𝑞 = 0 , 𝑑 = 0,… ,6

and therefore:

𝛥𝐼𝐷
96𝑑+𝑞 = 𝛥

𝐼𝐷
96𝑑+𝑞 −

1
96

96
∑

𝑞=1
𝛥
𝐼𝐷
96𝑑+𝑞 , 𝑑 = 0,… ,6 .

As a result, the single-week profile fulfills Requirement 3.
Again, the final ID profile is constructed by the superposition of the 

𝛾 scaled market deviations to the single-week constructed DA profile:
𝐼𝐷

𝛾
96𝑑+𝑞 = 𝐷𝐴

𝛽
24𝑑+⌈𝑞∕4⌉ + 𝛾𝛥𝐼𝐷

96𝑑+𝑞 , 𝑑 = 0,… ,6 , 𝑞 = 1,… ,96 .

As in Eq. (7), we select 𝛾 by solving the equation: 

1
𝑊

𝑊
∑

𝑤=1
𝜎(𝐼𝐷7𝑤−6,1,… , 𝐼𝐷7𝑤−6,96,𝐼𝐷7𝑤−5,1,… , 𝐼𝐷7𝑤,96)

=

√

√

√

√

6
∑

𝑑=0

96
∑

𝑞=1

(

𝛽(𝐷𝐴24𝑑+⌈𝑞∕4⌉ −𝐷𝐴) + 𝛾𝛥𝐼𝐷
96𝑑+𝑞

)2

(12)

for 𝛾 > 0. In this way, the constructed single-week ID profile repro-
duces the standard deviation of the averaged standard deviation of the 
historical single-week ID profiles. For a stronger higher varying profile, 
the parameter 𝛾 can be calculated as: 
𝑄3.0

(

{𝜎(𝐼𝐷7𝑤−6,1,… , 𝐼𝐷7𝑤,96)}𝑊𝑤=1
)

=

√

√

√

√

√

6
∑

𝑑=0

96
∑

𝑞=1

(

𝛽(𝐷𝐴24𝑑+⌈𝑞∕4⌉ −𝐷𝐴) + 𝛾𝛥𝐼𝐷
96𝑑+𝑞

)2 .
(13)

Considering the historical data of EPEX Spot for 2023, and 52 full weeks 
(from Monday to Sunday), Eq. (12) gives 𝛾 = 1.60, and Eq. (13) gives 
𝛾 = 2.32. The final single-week Nominal ready-to-use DA and ID profiles 
for the full year 2023 data (𝛽 = 1.58, 𝛾 = 1.60) are shown in Fig.  6.

Fig.  6 is consistent with the observations of Germscheid et al. 
(2023). Lowest prices are reached during the weekend associated with a 
lower demand. Accordingly, the price peak in the weekend mornings is 
less significant than the peak in the evening. As reported by Guthrie and 
Videbeck (2002), during weekdays the daytime off-peak and evening 
peak periods exhibit distinct market behaviors. However, during the 
weekend these periods operate as a unified market. Additionally, the 
absence of morning peaks in the weekends results from morning prices 
correlated with the rest prices of the weekend. The highest DA prices 
are reached on Monday and Thursday evening, and the highest ID 
prices on Monday evening.

To capture seasonal price patterns, the approach could be extended 
by averaging over a 3-month period. However, we consider the data 
from a single calendar year too limited for this technique. At the same 
time, using data from 2022 and 2023 is not feasible due to significant 
deviations caused by the 2022 energy crisis.

5. Exemplary price profiles

In this section, we present the price scenarios derived from our 
methodology application (Section 5.1) and compared the resulting 
profiles to historical time-series (Section 5.2).

5.1. Scenarios

We apply the proposed method to calculate DA and ID price profiles 
based on the full year 2023 historical data (01.01.2023 to 31.12.2023). 
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Table 2
Characteristic statistical values of the single-day DA electricity price profile.
 Quantity DA price profile
 Nominal Unscaled Extreme Historical 
 𝛽 1.47 1.00 1.85b –  
 Minimum (e/MWh) 54.99 67.82 67.82 −500.00  
 Maximum (e/MWh) 158.45 138.24 138.24 524.27  
 Mean (e/MWh) 95.18 95.18 95.18 95.18  
 Std. deviation (e/MWh) 28.22 19.21 35.46 28.22  
 24h integral (e/24 MWh) 2284.21 2284.21 2284.21 2284.21a  
a Average value over all day integrals.
b The number of histogram bins is calculated with the Scott rule (Scott, 1979).

Table 3
Characteristic statistical values of the single-day ID electricity price profile.
 Quantity ID price profile
 Nominal Unscaled Extreme Historical 
 𝛾 1.91 1.00 1.77b –  
 Minimum (e/MWh) 16.36 49.04 12.00 −666.87  
 Maximum (e/MWh) 202.96 161.50 215.73 3543.51  
 Mean (e/MWh) 95.18 95.18 95.18 97.40  
 Std. deviation (e/MWh) 40.31 24.61 44.73 40.31  
 24h integral (e/24 MWh) 2284.21 2284.21 2284.21 2337.64a  
a Average value over all day integrals.
b The number of histogram bins is calculated with the Scott rule (Scott, 1979).

Table 4
Characteristic statistical values of the single-week DA electricity price profile.
 Quantity DA price profile
 Nominal Unscaled Extreme Historical  
 𝛽 1.58 1.00 1.76b –  
 Minimum (e/MWh) −22.07 20.92 −35.70 −500.00  
 Maximum (e/MWh) 191.34 156.22 202.47 524.27  
 Mean (e/MWh) 95.40 95.40 95.40 95.40c  
 Std. deviation (e/MWh) 38.59 24.46 43.07 38.59c  
 1week integral (e/168 MWh) 16026.52 16026.52 16026.52 16026.52a 
a Average value over all week integrals.
b The number of histogram bins is calculated with the Scott rule (Scott, 1979).
c Average value over all full weeks.

We construct profiles following Sections 3 and 4 with three variance 
scaling cases each:

1. Single-day horizon:
(i) Nominal (𝛽 = 1.47, 𝛾 = 1.91), (ii) Unscaled (𝛽 = 1.0, 𝛾 = 1.0), 
(iii) Extreme (𝛽 = 1.85, 𝛾 = 1.77),

2. Single-week horizon:
(i) Nominal (𝛽 = 1.58, 𝛾 = 1.6), (ii) Unscaled (𝛽 = 1.0, 𝛾 = 1.0), 
(iii) Extreme (𝛽 = 1.76, 𝛾 = 2.32).

We show the resulting single-day Nominal profiles in Fig.  5 and 
provide the Unscaled and Extreme profile in the SI. Similarly, the single-
week Nominal profiles are shown in Fig.  6 and the Unscaled and Extreme
profiles can be found in the SI. We furthermore provide the profiles in
CSV format via Git (Link) as well as in table format in the SI. We 
highlight that the Unscaled data may be used as a basis to construct 
price profiles for arbitrary scaling options (𝛽, 𝛾).

We additionally provide a quantitative statistical evaluation of the 
constructed profiles in Tables  2 to 5. In particular, the tables confirm 
that the standard deviation of the Nominal DA and ID profiles and the 
corresponding historical data match as intended by nominal scaling. 
Moreover, while the mean of the DA profiles matches the historical 
data, there is a difference for the ID profiles due to the correction of the 
integral zero-mean deviation. Consequently, the 24h price integrals of 
the corresponding DA and ID profiles are identical (compare last row 
in Tables  2 and 3 as well as Tables  4 and 5).

https://git.rwth-aachen.de/avt-svt/public/representative-electricity-price-profiles
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Fig. 6. Nominal (𝛽 = 1.58, 𝛾 = 1.60) single-week DA and ID price profile for year 2023.
Table 5
Characteristic statistical values of the single-week ID electricity price profile.
 Quantity ID price profile
 Nominal Unscaled Extreme Historical  
 𝛾 1.60 1.00 2.32b –  
 Minimum (e/MWh) −64.06 −5.18 −101.93 −666.87  
 Maximum (e/MWh) 279.91 211.45 336.05 3543.51  
 Mean (e/MWh) 95.40 95.40 95.40 95.61c  
 Std. deviation (e/MWh) 47.02 29.69 57.48 47.02c  
 1week integral (e/168 MWh) 16026.52 16026.52 16026.52 16026.52a 
a Average value over all week integrals.
b The number of histogram bins is calculated with the Scott rule (Scott, 1979).
c Average value over all full weeks.

5.2. Comparison to historical data

For the sake of comparison, we complement the constructed pro-
files by historical profiles that closely match each of the calculated 
profiles. Thereby, we show that the constructed profiles do not only 
artificially represent the averaged historical data but are even similar 
to real historical price profiles. Such a historic profile may thus be 
considered close to the center point in the averaging metric. We retrieve 
the corresponding historical day by minimizing the mean absolute 
deviation between the historical and a constructed scenario for DA and 
ID simultaneously. The resulting profiles are visually juxtaposed to the 
constructed ones. In the single-day case, we solve: 

min
𝑖

(

24
∑

𝑘=1
|𝐷𝐴

𝛽
𝑘 −𝐷𝐴𝑖,𝑘| +

1
4

96
∑

𝑞=1
|𝐼𝐷

𝛾
𝑞 − 𝐼𝐷𝑖,𝑞|

)

. (14)

A single-week historical profile is identified analogously. The min-
imization problem is solved by first calculating the absolute price 
differences between the constructed daily profiles and each of the 
historical DA and ID profiles, as given in Eq. (14). Then, the objective 
value is calculated for each of the historical days, and the minimum 
value is selected. The corresponding day represents the historical time-
series data that best aligns with the constructed DA and ID profiles 
simultaneously.

Fig.  7 contrasts the Nominal single-day profiles and the historical 
day with the best fit. While the inner hour variance of the Nominal
ID profile is more pronounced during early and late hours, all profiles 
follow similar trends and are overall comparable. Moreover, inserting 
Eq. (2) into Eq. (14) reveals that the historic profile in Fig.  7 indeed 
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reflects the day which deviates the least from the rest historical days, 
i.e., the cluster center in this sense. Next, Fig.  8 depicts the Unscaled
profiles and the historical best fit. Since here all single-week profiles 
have the same historical week as the best fit, we only show the plot 
for the DA Nominal profile in Fig.  9. The rest of the figures for profile 
matching with historical data are given in the SI.

We raise attention to the higher mismatch of the two profiles in 
Fig.  9 for the last hours of the week and we note that during the 
weekdays (from 0h up to 120h) the price pattern is well-defined due to 
a consistent daily cycle in electricity demand (i.e., prices rise when the 
workday begins, peak in the afternoon, and decline in the evening as 
demand shifts to residential use) (Knittel and Roberts, 2005). This does 
not apply to the weekend (from 120h up to 168h) when demand is 
more unpredictable. We conclude that the Unscaled and Nominal profile 
represent the historical data closely. For the Nominal profile, the fitted 
historical day merely serves for validation, whereas for the Unscaled
profile the historical day corresponds to the most representative day in 
the historical data set.

Lastly, we discuss a limitation of our approach regarding more 
extreme scenarios. Different from the close alignment of the Unscaled
and Nominal profiles with historical data, solving the fitting problem 
in Eq. (14) for the Extreme profile did not lead to satisfactory results. 
This is explained by the extreme deviations, i.e., outliers, observed in 
the historical data, especially in the ID price. These outliers, despite 
showing high variance, when composing the Extreme profiles, exhibit 
different patterns than the averaged ones of the constructed (scaled) 
profiles. Nevertheless, when fitting historical DA and ID profiles sepa-
rately rather than jointly, we were able to find similar historical profiles 
(see figures in SI). We conclude that while a more extreme variance 
scaling is generally valid, an alternative scenario generation method 
should be consulted if extreme profiles with abnormal patterns are 
sought.

6. Case study and method comparison

We apply our scenario generation method to a DSM scheduling case 
study and compare to scheduling results when employing price scenar-
ios obtained using literature methods. As elaborated in the introductory 
section, we aim for short-horizon price scenarios that characterize 
longer periods sufficiently well to enable substantiated generalization 
and thus decision-making, e.g., process design assessment. Thereby, 
we target case studies with complex process models, for which long 
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Fig. 7. Nominal single-day and corresponding best fit of historical profiles for year 2023.
scheduling horizons are computationally prohibitive (Schulze et al., 
2024).

We use the DA and ID price scenarios of the suggested Nominal
and Unscaled cases and compare to scenarios generated by clustering 
methods. To this end, we examine the economic generalization error 
from a generated scenario to the detailed results obtained for one year 
of real (historical) price data. We then compare the generalization 
errors from the different price scenarios.

6.1. Problem description

We investigate chlor-alkali electrolysis (CAE), which is a classical 
DR candidate due to high electricity demand Roh et al. (2019), Brée 
et al. (2020). To facilitate scheduling flexibility, we include a down-
stream product storage tank. Given a fixed daily production volume, 
we aim to minimize electricity costs over a scheduling horizon. To 
this end, we consider the three scheduling setups where (i) only the 
DA spot market is considered, (ii) DA and ID market are included 
simultaneously, and (iii) a two-stage program considering a DA market 
10 
in the first stage and ID scheduling subsequently. Setup (ii) represents 
the idealistic case of an exact ID price forecast on the day ahead. 
On the other hand, setup (iii) accounts for the chronological order of 
participation in the two markets.

The scheduling program is formulated as a linear program (LP). In 
all three cases, we solve deterministic scheduling LPs of the generic 
form: 

min
𝒖𝑡∈𝛺

1
𝑇

𝑇
∑

𝑡=1
𝛷𝑡(𝒙𝑡, 𝒖𝑡) (15a)

s.t. 𝒇 (𝒙𝑡,𝒙𝑡−1, 𝒖𝑡) = 0 , 𝒙0 = 𝒙̂ , 𝑡 ∈ {1,… , 𝑇 } , (15b)

𝒄(𝒙𝑡,𝒙𝑡−1, 𝒖𝑡) ≤ 0 , 𝑡 ∈ {1,… , 𝑇 } , (15c)

𝒙𝑘 = 𝒙0 , 𝑘 = 96,192,… , 𝑇 , (15d)

wherein 𝑡 is the time index of quarter-hourly discretization steps on 
the scheduling horizon, and 𝑇 = 96 for a single-day horizon and 
𝑇 = 35040 for a full year. The scheduling degrees of freedom (DOFs), 
𝒖 ∈ 𝛺, i.e., the traded energy volume(s) 𝑃 , are constrained to an 
𝑡 𝑡
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Fig. 8. Unscaled single-day and corresponding best fit of historical profile for year 2023.
admissible set 𝛺 ⊆ R𝑛𝑢 . The states 𝒙𝑡 ∈ R𝑛𝑥  describe the quarter-
hourly production volumes 𝐹𝑡, and mass production rate 𝑀𝑡, and the 
energy storage 𝑆𝑡 (i.e., power integrated over the 15min between 𝑡−1
and 𝑡). Eq. (15b), wherein 𝒇 ∶ R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑥 , represents the 
linear process model. The dependence on 𝒙𝑡−1 is due to the integrating 
storage system. Eq. (15c), wherein 𝒄 ∶ R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑐 , represents 
the linear path constraints and ramping constraints on 𝑃𝑡, and the 
linear constraints on 𝑀𝑡, 𝐹𝑡 and 𝑆𝑡. The ramping constraints reflect 
that the process cannot realize arbitrarily large steps in the production 
rate. Linear constraints on the power purchases from the DA market 
reassure compliance with the market limitations, i.e., power can be 
bought up to a maximum allowance and not sold to the DA market. 
Finally, Eq. (15d) represents a periodic constraint on storage at the 
end of each day, and Eq.  (15b) gives the fixed initial state 𝒙̂ ∈ R𝑛𝑥 . 
The detailed equations and parametric values of the process model and 
problem constraints are taken from Germscheid et al. (2022).
11 
To calculate the running electricity cost 𝛷𝑡, we follow the notation 
of electricity prices, 𝐷𝐴

⌈𝑡∕4⌉ and 𝐼𝐷𝑡, from the preceding sections. Cor-
respondingly, the purchased DA and ID energy volumes are denoted by 
𝑃DA
𝑡  and 𝑃 ID

𝑠,𝑡 . The available scheduling DOFs as well as the calculation 
of 𝛷𝑡 differ across the three cases:

(i) 𝛷(i)
𝑡 = 𝐷𝐴

⌈𝑡∕4⌉ ⋅ 𝑃DA
𝑡  and 𝒖𝑡 = 𝑃DA

𝑡 .
(ii) 𝛷(ii)

𝑡 = 𝐷𝐴
⌈𝑡∕4⌉ ⋅ 𝑃DA

𝑡 + 𝐼𝐷𝑡 ⋅ 𝑃 ID
𝑡  and 𝒖𝑡 = {𝑃DA

𝑡 , 𝑃 ID
𝑡 }.

(iii) First stage: 𝛷𝑡 = 𝛷(i)
𝑡  and 𝒖𝑡 = 𝑃DA

𝑡 . Second stage: 𝛷𝑡 = 𝛷(ii)
𝑡  and 

𝒖𝑡 = 𝑃 ID
𝑡  for 𝑃DA

𝑡  fixed.

We assume that 𝑃DA
𝑡  is allowed to vary sub-hourly. When considering 

multiple price data clusters (𝑘 > 1), we solve Problem (15) for each 
cluster 𝑠, 𝑠 ∈ [1, 𝑘], using the cluster representative prices 𝐷𝐴𝑠

⌈𝑡∕4⌉ and 
𝐼𝐷𝑠. Then, we weight the cost terms 𝛷𝑠 based on cluster size by using 
𝑡 𝑡
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Fig. 9. Nominal DA single-week price profiles compared to the best fit historical week in 2023.
the respective cluster weights 𝜆𝑠: 

WDC =
𝑘
∑

𝑠=1

24𝜆𝑠
𝑇

𝑇
∑

𝑡=1
𝛷𝑠

𝑡 , (16)

This weighted daily cost (WDC) is then used to compare the different 
setups.

6.2. Price scenario generation

We investigate different price scenarios, namely the proposed Nom-
inal and Unscaled profiles, and scenarios from 𝑘-means clustering, 
𝑘-medoids clustering, and hierarchical clustering. Following (Kotzur 
et al., 2018) and Xu et al. (2016), the DA clustering criteria are either 
(a) the daily mean of the DA prices or (b) the equally-weighted daily 
mean and daily standard deviation of the DA prices. For the hierarchical 
clustering, we consider both medoids and centroids as cluster rep-
resentators. The corresponding generation methodologies are termed 
‘‘hierarchical-m’’ and ‘‘hierarchical-c’’, respectively. In market setups 
(ii) and (iii), we cluster regarding (c) the daily mean of the DA prices 
and the daily standard deviation of the ID-DA market deviation, again 
equally weighted. This clustering strategy is based on previous findings 
on price component correlation and frequency analysis (Rahimiyan and 
Baringo, 2016; Germscheid et al., 2022). Here, we focus on comparing 
the DR case study results for different price generation methods rather 
than a detailed analysis of the clustering techniques. Therefore, a 
limited number of clustering configurations is considered, omitting 
optimization over a different number of clustered profiles (or clusters) 
within the same clustering technique. Further exploration of clustering 
configurations for price generation in a DR setup is of interest and left 
for future work. In total, we here analyze 63 price profiles in 33 price 
scenarios, numbered S1 to S33, as detailed in Tables  6 to 8.

6.3. Implementation

We use the Python implementation of the 𝑘-means, 𝑘-medoids and 
hybrid clustering algorithms available in the sklearn (Pedregosa 
et al., 2011) package. The number of clusters considered results from 
application of the elbow method implemented in the python package
kneed (Satopaa et al., 2011). We implement Problem (15) in GAMS
and solve the problem using CPLEX with default solver settings. Similar 
to Section 5, we use historic DA and ID3 price data of the year 2023 
from EPEX Spot.
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6.4. Results

We discuss the case study results for the market setups (i) to (iii). 
Based on these results, we extract general conclusions in Section 6.5.

6.4.1. Setup i: Scheduling on DA market
Table  6 (upper part) shows that all scenario generation techniques 

produce results close to the WDC baseline of 5128e. The maximum 
(absolute) deviation of −2.1% occurs in S8, meaning that the schedule 
underestimates the average energy costs of one year of operation. In 
general, multi-criterion clustering outperforms single-criterion cluster-
ing, which highlights the importance of considering both standard 
deviation and absolute prices. The schedules obtained when using 
price scenarios from 𝑘-means clustering (S4), hierarchical clustering 
with centroids (S10 and S11), and the Unscaled profile (S3) result 
in higher costs than for the full year (S1). We explain this loss by 
the data smoothing associated with profile averaging. The results con-
firm literature observations that 𝑘-medoids outperform other clustering 
techniques (Kotzur et al., 2018; Teichgraeber and Brandt, 2019). Our
Nominal DA profile yields −0.6% WDC error, which is comparable to 
𝑘-medoids.

For visual comparison, we illustrate the single-day profiles of 𝑘-
medoids multi-criterion clustering (S7) and the Nominal profile (S2) in 
Fig.  10. The Nominal profile lies close to the dominant cluster (𝑠 = 4). 
The corresponding scheduling power profile results are given in the SI.

In some sense, our average-scale-shift strategy is loosely related to 
clustering techniques. Hence, to empirically examine similarities and 
differences, we next compare to single-cluster profiles (lower part of 
Table  6). Comparing the centroid-based scenarios (S12, S13, S18, S19) 
and our (non-scaled and non-shifted) Unscaled profile reveals an exact 
match, which is not surprising due to the averaging of all data for 
derivation of the single cluster representator. Conversely, single-day 
scheduling based on our Nominal profile notably outperforms all other 
results, highlighting its high potential despite simplicity of the method. 
Additionally, we notice that for 𝑘 = 1, the 𝑘-medoids clustering (S14 
and S15) performs significantly worse than 𝑘-means or hierarchical 
clustering. Finally, we observe no systematic bias in WDC deviation 
between single- and multiple-profile generation. The absence of bias 
stems from variation in clustering parameters leading to profiles that 
may or may not capture outliers of the full-year price data. We highlight 
that the existence of price outliers, combined with active path con-
straints and periodical terminal constraints, as outlined in Section 6.1, 
introduces variability in the results. In a more complex DR setup or 
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Fig. 10. Single-day Nominal profile (S2) versus profiles from 𝑘-medoids clustering (S7).
Table 6
Results of Case i. The percentages state the relative deviation of WDC from the 
benchmark (S1). Clustering criteria (a) and (b) as described in Section 6.2.
 Generation Crit. k WDC (e) Dev. (%)
 S1 Full year – − 5128 0.0
 S2 Nominal – − 5099 −0.6
 S3 Unscaled – − 5193 1.3
 S4 𝑘-means (a) 4 5186 1.1
 S5 𝑘-means (b) 4 5186 1.1
 S6 𝑘-medoids (a) 5 5180 1.0
 S7 𝑘-medoids (b) 4 5129 2 ⋅ 10−2
 S8 Hierarchical-m (a) 4 5021 −2.1
 S9 Hierarchical-m (b) 4 5067 −1.2
 S10 Hierarchical-c (a) 4 5185 1.1
 S11 Hierarchical-c (b) 4 5188 1.2

 S12 𝑘-means (a) 1 5193 1.3
 S13 𝑘-means (b) 1 5193 1.3
 S14 𝑘-medoids (a) 1 5299 3.3
 S15 𝑘-medoids (b) 1 5423 5.7
 S16 Hierarchical-m (a) 1 5248 2.3
 S17 Hierarchical-m (b) 1 5110 −0.4
 S18 Hierarchical-c (a) 1 5193 1.3
 S19 Hierarchical-c (b) 1 5193 1.3

a nonconvex DR optimization problem, this variability becomes even 
more pronounced, leading to less predictable deviation in the results.

6.4.2. Setup ii: Simultaneous scheduling on DA & ID market
We present the scheduling results in Table  7. As expected, simulta-

neous participation in the DA and ID markets reduces costs compared 
to the DA-only setting. The cost deviations from the baseline are higher 
(up to 9.4%) than in Case (i), with the largest errors for centroid-based 
clustering (S23, S26) and our Unscaled profile (S22). We attribute the 
higher deviations to a high error sensitivity in the interplay of two price 
profiles. Again, we observe substantial deviations for centroid-based 
clustering (S23, S26) and our Unscaled profile (S22). In contrast, using 
our Nominal DA and ID profiles (S21) only yields slightly larger errors 
than the medoid-based (𝑘 = 6,4) multi-scenarios (S24 and S25), and 
give an absolute error of 0.6% over scheduling based on the full year 
profiles.

6.4.3. Setup iii: Two-stage scheduling on DA & ID market
Table  8 collects the scheduling results of the two-stage problem. 

Here, the values of WDC and relative deviation fall between Cases i 
and ii. The best results are obtained when using our Nominal DA and 
ID profiles (S28), closely followed by the medoid-based hierarchical 
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Table 7
Results of Case ii. The percentages state the relative deviation of WDC from the 
benchmark (S20). S23 to S26 use clustering criteria (c) as described in Section 6.2.
 Generation k WDC (e) Dev. (%) 
 S20 Full year – 4393 0.0
 S21 Nominal – 4318 −1.7
 S22 Unscaled – 4798 9.2
 S23 𝑘-means 5 4805 9.4
 S24 𝑘-medoids 6 4367 −0.6
 S25 Hierarchical-m 4 4369 0.6
 S26 Hierarchical-c 4 4808 9.4

Table 8
Results of Case iii. The percentages state the relative deviation of WDC from the 
benchmark (S20). S30 to S33 apply clustering criteria (c) as described in Section 6.2.
 Generation k WDC (e) Dev. (%)
 S27 Full year – 5029 0.0
 S28 Nominal – 4996 −0.6
 S29 Unscaled – 5152 2.4
 S30 𝑘-means 5 5136 2.1
 S31 𝑘-medoids 6 4968 −1.2
 S32 Hierarchical-m 4 5064 0.7
 S33 Hierarchical-c 4 5135 2.1

method (S33) and 𝑘-medoids clustering (S31). As before, centroid-
based clustering (S30 and S33) and our Unscaled profiles (S29) provide 
the least accurate prediction of energy costs. We found similar results 
when considering a one-week horizon, i.e., 𝑇 = 672 (see SI).

6.5. Discussion

Throughout all scheduling setups (i) to (iii), we have calculated 
cost errors for the consideration of the proposed price generation and 
clustering techniques to the use of full-year data. We have shown that 
employing a single Nominal profile scenario facilitates accurate predic-
tion and generalization of economic savings within a DSM scheduling 
strategy. Notably, in Case i, using our Nominal scenario outperformed 
state-of-the-art 𝑘 = 1 clustering methods (except hierarchical-m clus-
tering with similar results). More generally, the predictions with our 
price scenario generation strategy consistently belongs to the two most 
accurate result throughout all cases, having generalization errors below 
± 2%. This finding supports the use of (variance) scaling within profile 
construction.

Considering that DSM scheduling savings commonly lie between 
2% and 10% (Otashu and Baldea, 2018; Caspari et al., 2020; Mucci 
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et al., 2023), we regard scenario generalization errors above 2% as 
economically prohibitive. Hence, our scenario generation method pro-
duces acceptable generalization errors in the present study. This indi-
cates that a single representative profile can be sufficiently descriptive 
for early-stage assessment of processes and operation strategies even 
outperforming multi-scenario clustering methods.

Among all clustering techniques, the medoid-based methods
(namely 𝑘-medoids and hierarchical clustering with a medoid-derived 
center profile) produce the most accurate scheduling results regarding 
generalization from a single day to the entire year. Further, considering 
multiple (here two) clustering criteria over a single criterion yields su-
perior results. Both observations agree with the literature (Teichgraeber 
and Brandt, 2019; Kotzur et al., 2018).

When considering a multi-stage problem (iii), the Nominal pro-
file proves to be more effective than clustering techniques. In that 
case, multi-criteria clustering struggles with complex criteria selection 
and inconsistent representation of individual market behaviors. On 
the other hand, clustering for each market separately would disre-
gard crucial dependencies between the prices as discussed by Schäfer 
et al. (2020), possibly preventing conclusions about the proposed DR 
method. Our method overcomes these challenges by retaining key 
statistical values, namely the average of the DA profile, the standard 
deviation of both DA and ID profiles, and the dominant fluctuation 
patterns of both profiles. Moreover, considering the DA-ID deviation 
allows for more substantial conclusions and facilitates a zero-integral 
constraint on the constructed price tuple.

7. Conclusions

We present a method to construct electricity price scenarios based 
on an averaging and scaling procedure using historical price data. 
Our approach is capable of generating both DA and ID scenarios. To 
reassure consistency, we adjust the cumulative deviation of a DA-ID 
pair to zero-mean deviation. Our method is constructed to be simple 
and intuitive, to have few adjustable parameters, and thus be easily 
reproducible. At the same time, the method can provide sufficiently 
realistic price profiles, by utilizing recent price data. In particular, 
we showed that the Nominal profile generation strategy facilitates the 
generalization from a single-day scheduling horizon to longer time 
periods, e.g., a full year. Overall, we aim to ease the selection of a price 
profile in future case studies on DSM.

We have applied our method to historical DA and ID data from EPEX 
spot for the year 2023. Therein, we generated multiple price scenarios 
with varying magnitude of price fluctuation. These profiles are ready-
to-use and openly accessible.4 The suggested DA and ID profiles closely 
represent historical time-series of DA and ID profiles realized on the 
same day. In a DR case study considering DA and ID markets, we 
compared the suggested price scenarios to single- and multi-clustering 
techniques. Therein, our suggested Nominal price scenarios provided 
consistently accurate prediction, comparable to medoid-based multi-
scenario hierarchical clustering, while outperforming all other cluster-
ing methods. Further, we have recently presented the first application 
of the price scenarios in a more complex integrated scheduling and 
control case study (Schulze et al., 2024).

We acknowledge that some advanced scenario generation methods 
additionally consider higher-order statistical moments in their genera-
tion procedure and might lead to even more accurate results. However, 
these approaches are inherently more involved, result in a greater num-
ber of adjustable parameters, and can trigger considerably high com-
putational times. In general, both historical data-based and scenario 
forecasting methods have been inaccurate at predicting the long-term 
evolution of prices. Clearly, this long-term evolution is subject to many 

4 https://git.rwth-aachen.de/avt-svt/public/representative-electricity-price-
profiles.
14 
factors, including trading policy and political changes. The forecast 
prices additionally refer to a specific forecasting time period and do 
not serve for generalizable results, e.g., they are time-specific and do 
not provide an average basis for evaluating the broader applicability 
when benchmarking a new DR concept.

Hence, we focus on approaches to reflect the current character of the 
electricity price on spot markets. Since we are interested in an intuitive 
and deterministic method rather than covering all possible price profile 
shapes, we accept to trade such a flexibility for the desired simplicity 
of the proposed averaging-based method.
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