Home > Publications database > Multimodal precision MRI of the individual human brain at ultra-high fields > print |
001 | 1044231 | ||
005 | 20250804115219.0 | ||
024 | 7 | _ | |a 10.1038/s41597-025-04863-7 |2 doi |
024 | 7 | _ | |a 2052-4436 |2 ISSN |
024 | 7 | _ | |a 2052-4463 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-03119 |2 datacite_doi |
024 | 7 | _ | |a 40157934 |2 pmid |
024 | 7 | _ | |a WOS:001456232500003 |2 WOS |
037 | _ | _ | |a FZJ-2025-03119 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Cabalo, Donna Gift |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Multimodal precision MRI of the individual human brain at ultra-high fields |
260 | _ | _ | |a London |c 2025 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752582749_22930 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Multimodal neuroimaging, in particular magnetic resonance imaging (MRI), allows for non-invasive examination of human brain structure and function across multiple scales. Precision neuroimaging builds upon this foundation, enabling the mapping of brain structure, function, and connectivity patterns with high fidelity in single individuals. Highfield MRI, operating at magnetic field strengths of 7 Tesla (T) or higher, increases signal-to-noise ratio and opens up possibilities for gains spatial resolution. Here, we share a multimodal Precision Neuroimaging and Connectomics (PNI) 7 T MRI dataset. Ten healthy individuals underwent a comprehensive MRI protocol, including T1 relaxometry, magnetization transfer imaging, T2*-weighted imaging, diffusion MRI, and multi-state functional MRI paradigms, aggregated across three imaging sessions. Alongside anonymized raw MRI data, we release cortex-wide connectomes from different modalities across multiple parcellation scales, and supply “gradients” that compactly characterize spatial patterning of cortical organization. Our precision MRI dataset will advance our understanding of structure-function relationships in the individual human brain and is publicly available via the Open Science Framework. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Leppert, Ilana Ruth |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Thevakumaran, Risavarshni |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a DeKraker, Jordan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Hwang, Youngeun |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Royer, Jessica |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kebets, Valeria |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Tavakol, Shahin |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wang, Yezhou |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zhou, Yigu |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Benkarim, Oualid |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Eichert, Nicole |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Paquola, Casey |0 P:(DE-Juel1)187055 |b 12 |u fzj |
700 | 1 | _ | |a Doyon, Julien |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Tardif, Christine Lucas |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Rudko, David |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Smallwood, Jonathan |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Rodriguez-Cruces, Raul |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Bernhardt, Boris C. |0 P:(DE-HGF)0 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41597-025-04863-7 |g Vol. 12, no. 1, p. 526 |0 PERI:(DE-600)2775191-0 |n 1 |p 526 |t Scientific data |v 12 |y 2025 |x 2052-4436 |
856 | 4 | _ | |u https://www.nature.com/articles/s41597-025-04863-7#author-information |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1044231/files/s41597-025-04863-7.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1044231 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)187055 |
910 | 1 | _ | |a Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada |0 I:(DE-HGF)0 |b 18 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a boris.bernhardt@mcgill.ca |0 I:(DE-HGF)0 |b 18 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-09 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI DATA : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:44:52Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:44:52Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-09 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:44:52Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-09 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SCI DATA : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|