001044260 001__ 1044260
001044260 005__ 20251030202115.0
001044260 037__ $$aFZJ-2025-03130
001044260 1001_ $$0P:(DE-HGF)0$$aPrimus, Sabrina Alexandra$$b0
001044260 245__ $$aSupplementary data to the article "Beyond Volume: Unraveling the Genetics of Human Brain Geometry"
001044260 260__ $$c2025
001044260 3367_ $$2BibTeX$$aMISC
001044260 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1761817584_19916
001044260 3367_ $$026$$2EndNote$$aChart or Table
001044260 3367_ $$2DataCite$$aDataset
001044260 3367_ $$2ORCID$$aDATA_SET
001044260 3367_ $$2DINI$$aResearchData
001044260 520__ $$aBrain geometry impacts brain function. A quantitative encoding of form is provided by the Laplace-Beltrami operator’s spectrum of eigenvalues (LBS). We examined LBS genetics of 22 subcortical brain structures and cerebellum in 19,862 healthy White-British UK Biobank participants by multivariate GWAS on the first 49 eigenvalues each. Controlling for surface and volume, we identified 80 unique variants influencing the shapes of one or several structures, with the highest yield (37 variants) for brain stem. The previously known influence of several of these loci on basic morphology, such as volume, is thus shown to also influence complex shape. Known associations of observed loci with blood pressure, neurodegeneration, alcohol consumption, and mental disorders hint at preclinical stages of these conditions potentially mediating the genetic effect on brain morphology. Significant correlations between LBS of several brain structures and the polygenic risks of hypertension, ischemic stroke and schizophrenia evince brain shapes as early biomarkers.
001044260 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001044260 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1$$ufzj
001044260 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b2$$ufzj
001044260 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
001044260 7001_ $$0P:(DE-HGF)0$$aWinkelmann, Juliane$$b4
001044260 7001_ $$0P:(DE-HGF)0$$aOexle, Konrad$$b5
001044260 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b6$$ufzj
001044260 8564_ $$uhttps://zenodo.org/records/15040891
001044260 909CO $$ooai:juser.fz-juelich.de:1044260$$pVDB
001044260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b1$$kFZJ
001044260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b2$$kFZJ
001044260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001044260 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b3
001044260 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b6$$kFZJ
001044260 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001044260 9141_ $$y2025
001044260 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001044260 980__ $$adataset
001044260 980__ $$aVDB
001044260 980__ $$aI:(DE-Juel1)INM-7-20090406
001044260 980__ $$aUNRESTRICTED