001044264 001__ 1044264
001044264 005__ 20251007202032.0
001044264 0247_ $$2doi$$a10.5194/gmd-18-4273-2025
001044264 0247_ $$2ISSN$$a1991-959X
001044264 0247_ $$2ISSN$$a1991-9603
001044264 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03134
001044264 037__ $$aFZJ-2025-03134
001044264 082__ $$a550
001044264 1001_ $$0P:(DE-Juel1)179383$$aDreger, Raphael$$b0$$eCorresponding author
001044264 245__ $$aOptimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
001044264 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2025
001044264 3367_ $$2DRIVER$$aarticle
001044264 3367_ $$2DataCite$$aOutput Types/Journal article
001044264 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759825646_8870
001044264 3367_ $$2BibTeX$$aARTICLE
001044264 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044264 3367_ $$00$$2EndNote$$aJournal Article
001044264 520__ $$aNumerical integration of multiphase chemical kinetics in atmospheric models is challenging. The underlying system of ordinary differential equations (ODEs) is stiff and thus difficult to solve. Rosenbrock solvers are a popular choice for such tasks. These solvers provide the desired stability and accuracy of results at an affordable yet large computational cost. The latter is crucially dependent on the efficiency of the step size control. Our analysis indicates that the local error, which is the key factor for the step size selection, is often overestimated, leading to very small substeps. In this study, we optimized the first-order step size controller most commonly employed in Rosenbrock solvers. Furthermore, we compared its efficiency to a second-order step size controller. We assessed the performance of the controllers in both a box and a global model for very stiff ODEs. Significant reductions in the computation time were accomplished with only marginal deviations in the results compared to the standard first-order controller. This was achieved not only for gas-phase chemistry but also for the more complex aqueous-phase chemistry in cloud droplets and deliquescent aerosols. Depending on the selected chemical mechanism, significant improvements were already achieved by simply adjusting heuristic parameters of the default controller. However, especially for the global model, the best results were achieved with the second-order controller, which reduced the number of function evaluations by 43 %, 27 % and 13 % for gas-phase, cloud and aerosol chemistry, respectively. The overall computational time was reduced by over 11 % while requiring only minimal adjustments to the original code. Analysis of a 1-year integration period showed that with the second-order controller, the deviations from the reference simulation stay below 1 % for the main tropospheric oxidants. The results presented here show the possibility of more efficient atmospheric chemistry simulations without compromising accuracy.
001044264 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001044264 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044264 7001_ $$0P:(DE-Juel1)164446$$aKirfel, Timo$$b1
001044264 7001_ $$0P:(DE-HGF)0$$aPozzer, Andrea$$b2
001044264 7001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b3
001044264 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b4
001044264 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b5$$eCorresponding author
001044264 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-18-4273-2025$$gVol. 18, no. 13, p. 4273 - 4291$$n13$$p4273 - 4291$$tGeoscientific model development$$v18$$x1991-959X$$y2025
001044264 8564_ $$uhttps://juser.fz-juelich.de/record/1044264/files/Invoice_Helmholtz-PUC-2025-87.pdf
001044264 8564_ $$uhttps://juser.fz-juelich.de/record/1044264/files/gmd-18-4273-2025.pdf$$yOpenAccess
001044264 8767_ $$8Helmholtz-PUC-2025-87$$92025-07-16$$a1200215990$$d2025-07-25$$eAPC$$jZahlung erfolgt$$zOZG-RE Portal
001044264 909CO $$ooai:juser.fz-juelich.de:1044264$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001044264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179383$$aForschungszentrum Jülich$$b0$$kFZJ
001044264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164446$$aForschungszentrum Jülich$$b1$$kFZJ
001044264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b3$$kFZJ
001044264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b5$$kFZJ
001044264 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001044264 9141_ $$y2025
001044264 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044264 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001044264 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001044264 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044264 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001044264 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044264 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:29:04Z
001044264 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:29:04Z
001044264 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044264 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001044264 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001044264 920__ $$lyes
001044264 9201_ $$0I:(DE-Juel1)ICE-3-20101013$$kICE-3$$lTroposphäre$$x0
001044264 980__ $$ajournal
001044264 980__ $$aVDB
001044264 980__ $$aUNRESTRICTED
001044264 980__ $$aI:(DE-Juel1)ICE-3-20101013
001044264 980__ $$aAPC
001044264 9801_ $$aAPC
001044264 9801_ $$aFullTexts