001044267 001__ 1044267
001044267 005__ 20250729202320.0
001044267 037__ $$aFZJ-2025-03137
001044267 041__ $$aEnglish
001044267 1001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b0$$ufzj
001044267 1112_ $$a15th International Conference on Nitride Semiconductors$$cMalmö$$d2025-07-06 - 2025-07-11$$gICNS-15$$wSweden
001044267 245__ $$aFermi level pinning at nitride semiconductor surfaces and interfaces
001044267 260__ $$c2025
001044267 3367_ $$033$$2EndNote$$aConference Paper
001044267 3367_ $$2DataCite$$aOther
001044267 3367_ $$2BibTeX$$aINPROCEEDINGS
001044267 3367_ $$2DRIVER$$aconferenceObject
001044267 3367_ $$2ORCID$$aLECTURE_SPEECH
001044267 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1753767720_3184$$xInvited
001044267 520__ $$aFermi level pinning plays a crucial role in nitride semiconductor growth, contact formation, and the engineering of insulating layers. While pinning effects and carrier accumulation have been widely studied at nitride surfaces, their impact on interfaces remains equally significant. In this presentation, we explore Fermi level pinning at non-polar (10-10) surfaces and interfaces using scanning tunneling spectroscopy, off-axis electron holography (EH) in TEM, and complementary DFT calculations.First we discuss the interplay of intrinsic surface states, defects, and air exposure on the Fermi level pinning at non-polar GaN, AlInN, AlGaN, and InN surfaces as well as the origin of electron accumulation. The empty group III-derived dangling bond is found to govern Fermi level pinning on most n-type group III nitrides, but not for InN, where defects dominate. Likewise for p-type doping defects govern the Fermi level pinning, too. Air exposure is found to shift pinning levels toward the band edges, attributed to water adsorption and dissociation, passivating intrinsic and extrinsic gap states. The results demonstrate that for all group III nitride semiconductors, including InN electron accumulation is not intrinsic, but rather extrinsically induced by adlayers.  Furthermore, we demonstrate the quantification of Fermi level pinning by EH in TEM using the example of focussed ion beam (FIB) implanted carbon. FIB preparation induces a Fermi level pinning about 0.7 eV above the valence band edge, attributed to C on N sites. Annealing experiments allow to probe the defect dynamics and barriers. Notably, it is demonstrated that carbon undergoes an atomic site-switching process, transitioning from a substitutional to an interstitial site where it becomes electrically inactive upon annealing. These findings provide a profound foundation for understanding the stability of insulating layers in ternary nitrides and offer critical insights for optimizing nitride-based electronic and insulating structures.
001044267 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001044267 7001_ $$0P:(DE-Juel1)173944$$aLan, Qianqian$$b1$$ufzj
001044267 7001_ $$0P:(DE-Juel1)176471$$aFreter, Lars$$b2
001044267 7001_ $$0P:(DE-HGF)0$$aButté, Raphaël$$b3
001044267 7001_ $$0P:(DE-HGF)0$$aGrandjean, Nicolas$$b4
001044267 7001_ $$0P:(DE-HGF)0$$aCarlin, Jean-François$$b5
001044267 7001_ $$0P:(DE-HGF)0$$aEisele, Holger$$b6
001044267 7001_ $$0P:(DE-Juel1)145975$$aPortz, Verena$$b7
001044267 7001_ $$0P:(DE-HGF)0$$aSun, Qian$$b8
001044267 7001_ $$0P:(DE-Juel1)186873$$aJi, Keyan$$b9
001044267 7001_ $$0P:(DE-HGF)0$$aLymperakis, Liverios$$b10
001044267 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b11$$ufzj
001044267 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b12$$ufzj
001044267 8564_ $$uhttps://beyond-production.objects.dc-sto1.glesys.net/projects/ecd50c9c-939f-4965-9473-b049aada8908/documents/p8mqlVQetNyU37XA99HCX5wh0RxAkwQbM6OsfiC7.html
001044267 909CO $$ooai:juser.fz-juelich.de:1044267$$pVDB
001044267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b0$$kFZJ
001044267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173944$$aForschungszentrum Jülich$$b1$$kFZJ
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland$$b4
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland$$b5
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Otto von Guericke Universität Magdeburg, Institut für Physik, 39106 Magdeburg, Germany$$b6
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)145975$$a Hamburger Fern-Hochschule, Department of Technology, 22081 Hamburg, Germany$$b7
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China$$b8
001044267 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, University of Crete, Heraklion 70013, Greece$$b10
001044267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b11$$kFZJ
001044267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b12$$kFZJ
001044267 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001044267 9141_ $$y2025
001044267 920__ $$lyes
001044267 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001044267 980__ $$aconf
001044267 980__ $$aVDB
001044267 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001044267 980__ $$aUNRESTRICTED