001044269 001__ 1044269
001044269 005__ 20250729202320.0
001044269 037__ $$aFZJ-2025-03139
001044269 041__ $$aEnglish
001044269 1001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b0$$ufzj
001044269 1112_ $$aUniversität Münster - Seminar "Aktuelle Fragen der Nanophysik"$$cMünster$$wGermany
001044269 245__ $$aLight-excited scanning tunneling spectroscopy of III-V semiconductors$$f2024-07-08 -
001044269 260__ $$c2024
001044269 3367_ $$033$$2EndNote$$aConference Paper
001044269 3367_ $$2DataCite$$aOther
001044269 3367_ $$2BibTeX$$aINPROCEEDINGS
001044269 3367_ $$2ORCID$$aLECTURE_SPEECH
001044269 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1753767737_9024$$xInvited
001044269 3367_ $$2DINI$$aOther
001044269 520__ $$aThe efficiency of solar cell and optoelectronic devices is closely connected to the nanoscale distribution of charge carriers. For example, defects can give rise to non-radiative carrier recombination centers, reducing the charge-carrier concentration locally. Such effects are detrimental to both the electron-light and light-electron conversion efficiencies in optoelectronic and solar cell devices, respectively. In order to understand the physical processes involved at the atomic scale, the materials used in the device structures need to be investigated simultaneously under illumination and with atomic resolution.Photoexcited scanning tunneling spectroscopy (STS) is ideally suited to probe the illumination-induced local surface photovoltage, band bending, carrier concentrations, and the electrostatic potential distribution. A quantitative understanding of photoexcited tunneling spectroscopy is unfortunately not at all straight forward. This is further aggravated by the fact that only for very few materials tunneling spectra can be intuitively understood, while for all other materials simulations of the tunnel current are a prerequisite for extracting the underlying physics, even without illumination. Therefore, we developed a theoretical modelling of photoexcited tunneling spectroscopy using simulations of the exact sample structure as “digital twin”. In this presentation, we will illustrate the methodology and apply it to III-V semiconductors to extract the local non-equilibrium charge-carrier concentration and redistribution. The same methodology is also applied to analyze tunneling spectra without photoexcitation and off-axis electron holography measurements in a transmission electron microscope to derive potential maps, electron affinity differences, mean inner potentials, polarization, band offsets, etc.
001044269 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001044269 8564_ $$uhttps://www.uni-muenster.de/imperia/md/content/physik_pi/bratschitsch/nanophysik/08072024_schnedler.pdf
001044269 909CO $$ooai:juser.fz-juelich.de:1044269$$pVDB
001044269 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b0$$kFZJ
001044269 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001044269 920__ $$lyes
001044269 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001044269 980__ $$atalk
001044269 980__ $$aVDB
001044269 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001044269 980__ $$aUNRESTRICTED