001044270 001__ 1044270
001044270 005__ 20250729202320.0
001044270 037__ $$aFZJ-2025-03140
001044270 041__ $$aEnglish
001044270 1001_ $$0P:(DE-Juel1)173944$$aLan, Qianqian$$b0$$ufzj
001044270 1112_ $$a50th Conference on the Physics and Chemistry of Surfaces and Interfaces$$cKona$$d2025-01-19 - 2025-01-23$$gPCSI-50$$wUSA
001044270 245__ $$aElectrostatic Extension of Magnetic Proximity Effect in La0.7Sr0.4MnO3
001044270 260__ $$c2025
001044270 3367_ $$033$$2EndNote$$aConference Paper
001044270 3367_ $$2DataCite$$aOther
001044270 3367_ $$2BibTeX$$aINPROCEEDINGS
001044270 3367_ $$2DRIVER$$aconferenceObject
001044270 3367_ $$2ORCID$$aLECTURE_SPEECH
001044270 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1753774696_5448$$xOther
001044270 520__ $$aMany fascinating magnetic effects emerge at interfaces between layers with different magnetic orders. Interface confinement is intimately related to the magnetic proximity effect, which typically has a spatial extent of only a few atomic layers. This short extent is due to the underlying physical coupling mechanisms, such as the exchange interaction, the Dzyaloshinsky-Moriya interaction, interface states, rehybridization, and reconstruction, all of which are highly localized. We use off-axis electron holography to reveal an exceptionally long-range magnetic proximity effect reaching ∼40 nm at a ferromagnetic (FM)/ paramagnetic (PM) interface in La0.7Sr0.3MnO3 (LSMO). This wide extent arises from carrier diffusion and drift across the interface, which changes the Mn3+/Mn4+ ratio and thereby the density of magnetic moments and local Curie temperature. We determine the carrier concentration dependence of the Curie temperature and unravel the physical mechanism of the electrostatic extension of magnetic proximity effects, fundamentally reshaping our understanding of micromagnetism inperovskites.
001044270 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001044270 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b1$$ufzj
001044270 7001_ $$0P:(DE-Juel1)176471$$aFreter, Lars$$b2
001044270 7001_ $$0P:(DE-HGF)0$$aWang, Chuanshou$$b3
001044270 7001_ $$0P:(DE-HGF)0$$aFischer, Kurt$$b4
001044270 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5$$ufzj
001044270 7001_ $$0P:(DE-Juel1)130627$$aEbert, Philipp$$b6$$eCorresponding author$$ufzj
001044270 8564_ $$uhttps://pcsi2025.avs.org/wp-content/uploads/2024/10/ProgramBook.pdf
001044270 909CO $$ooai:juser.fz-juelich.de:1044270$$pVDB
001044270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173944$$aForschungszentrum Jülich$$b0$$kFZJ
001044270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b1$$kFZJ
001044270 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Southern University of Science and Technology, China$$b3
001044270 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Institute of Technology, Japan$$b4
001044270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
001044270 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b6$$kFZJ
001044270 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001044270 9141_ $$y2025
001044270 920__ $$lyes
001044270 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001044270 980__ $$aconf
001044270 980__ $$aVDB
001044270 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001044270 980__ $$aUNRESTRICTED