001     1044270
005     20250729202320.0
037 _ _ |a FZJ-2025-03140
041 _ _ |a English
100 1 _ |a Lan, Qianqian
|0 P:(DE-Juel1)173944
|b 0
|u fzj
111 2 _ |a 50th Conference on the Physics and Chemistry of Surfaces and Interfaces
|g PCSI-50
|c Kona
|d 2025-01-19 - 2025-01-23
|w USA
245 _ _ |a Electrostatic Extension of Magnetic Proximity Effect in La0.7Sr0.4MnO3
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1753774696_5448
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Many fascinating magnetic effects emerge at interfaces between layers with different magnetic orders. Interface confinement is intimately related to the magnetic proximity effect, which typically has a spatial extent of only a few atomic layers. This short extent is due to the underlying physical coupling mechanisms, such as the exchange interaction, the Dzyaloshinsky-Moriya interaction, interface states, rehybridization, and reconstruction, all of which are highly localized. We use off-axis electron holography to reveal an exceptionally long-range magnetic proximity effect reaching ∼40 nm at a ferromagnetic (FM)/ paramagnetic (PM) interface in La0.7Sr0.3MnO3 (LSMO). This wide extent arises from carrier diffusion and drift across the interface, which changes the Mn3+/Mn4+ ratio and thereby the density of magnetic moments and local Curie temperature. We determine the carrier concentration dependence of the Curie temperature and unravel the physical mechanism of the electrostatic extension of magnetic proximity effects, fundamentally reshaping our understanding of micromagnetism inperovskites.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
700 1 _ |a Schnedler, Michael
|0 P:(DE-Juel1)143949
|b 1
|u fzj
700 1 _ |a Freter, Lars
|0 P:(DE-Juel1)176471
|b 2
700 1 _ |a Wang, Chuanshou
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fischer, Kurt
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 5
|u fzj
700 1 _ |a Ebert, Philipp
|0 P:(DE-Juel1)130627
|b 6
|e Corresponding author
|u fzj
856 4 _ |u https://pcsi2025.avs.org/wp-content/uploads/2024/10/ProgramBook.pdf
909 C O |o oai:juser.fz-juelich.de:1044270
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143949
910 1 _ |a Southern University of Science and Technology, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a National Institute of Technology, Japan
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130627
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21