001044377 001__ 1044377
001044377 005__ 20250722202240.0
001044377 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03152
001044377 037__ $$aFZJ-2025-03152
001044377 041__ $$aEnglish
001044377 1001_ $$0P:(DE-Juel1)187476$$aKuhles, Gianna$$b0$$eCorresponding author
001044377 1112_ $$a43. European Workshop on Cognitive Neuropsychology$$cBressanone$$d2025-01-26 - 2025-01-30$$gEWCN$$wItaly
001044377 245__ $$aPrediction of depression in Parkinson’s disease by prosodic speech features
001044377 260__ $$c2025
001044377 3367_ $$033$$2EndNote$$aConference Paper
001044377 3367_ $$2BibTeX$$aINPROCEEDINGS
001044377 3367_ $$2DRIVER$$aconferenceObject
001044377 3367_ $$2ORCID$$aCONFERENCE_POSTER
001044377 3367_ $$2DataCite$$aOutput Types/Conference Poster
001044377 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1753188576_25565$$xAfter Call
001044377 500__ $$aThis study was supported by▪ the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2–1, EI 816/16-1 and EI 816/21-1),▪ the National Institute of Mental Health (R01-MH074457),▪ the Helmholtz Portfolio Theme "Supercomputing and Modeling for the HumanBrain",▪ the Virtual Brain Cloud (EU H2020, no. 826421) &▪ the National Institute on Aging (R01AG067103)
001044377 520__ $$aIntroduction: Parkinson’s disease (PD) is a progressive neurodegenerative disease whichmainly affects functions of the motor system. Depressive disorders (DD) are one of the mostcommon comorbidities in PD (Perez-Toro et al., 2022) and often lead to a decrease in qualityof life (Balestrino & Martinez-Martin, 2017). Previous research revealed a strong relationshipbetween prosodic impairment and DD (Vélez Feijó et al., 2008) which is why recent studieshave investigated whether speech parameters might be suitable as biomarkers for the predictionof depression in PD. However, the variability in feature extraction tools and methodologies hasleft the most predictive prosodic parameters inadequately defined (Perez-Toro et al., 2022). Inour study, we aim to address this gap by identifying reliable, standardised features for predictingdepression in PD.Methods: Healthy subjects (n = 249) and people with PD (n = 121) performed a spontaneousspeech task of 90 s duration. 88 acoustic features related to prosodic functions wereautomatically extracted from these speech samples using the toolbox OpenSMILE. Participantsalso completed the Beck Depression Inventory (BDI-II) to assess depressive symptoms.Prosodic features were used to classify between healthy subjects and people with PD.Additionally, a machine learning regression approach was employed to predict individual BDI-II scores from prosodic speech features and to determine the most significant predictors.Results: Firstly, the classification analysis demonstrated a high level of accuracy (0.997) indistinguishing between healthy subjects and individuals with PD based on the prosodic features.Secondly, the regression analysis revealed an R2 value of 0.024, indicating limited predictivepower for BDI-II scores derived from prosodic features. However, consistent with priorresearch, spectral parameters emerged as the most significant predictors, especially the MelFrequency Cepstral Coefficients, which describe the perceived pitch of the frequency spectrum.Discussion: Although the model demonstrated satisfactory performance in classifying betweenhealthy individuals and those with Parkinson's disease, the rather low accuracy in predictingdepressive disorders (DD) highlights the complexity of using prosodic features for this purpose.While present results need to be validated in larger and diverse samples, they pave the way tothe development of uniform methodologies for the systematic extraction of speech-relatedbiomarkers in PD, which in the long run might have clinical utility for better understanding DDin people with PD.Pérez-Toro PA et al. Speech Commun. (2022) 145:10-20.Balestrino R & Martinez-Martin P J. Neurol. Sci. (2017) 374: 3-8.Vélez Feijó A et al. Neuro. Dis. Treat. (2008) 4:669-674.
001044377 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001044377 7001_ $$0P:(DE-HGF)0$$aThies, Tabea$$b1
001044377 7001_ $$0P:(DE-HGF)0$$aBarbe, Michael$$b2
001044377 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3
001044377 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b4
001044377 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b5
001044377 8564_ $$uhttps://juser.fz-juelich.de/record/1044377/files/Poster.pdf$$yOpenAccess
001044377 909CO $$ooai:juser.fz-juelich.de:1044377$$popenaire$$popen_access$$pVDB$$pdriver
001044377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187476$$aForschungszentrum Jülich$$b0$$kFZJ
001044377 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)187476$$a HHU Düsseldorf$$b0
001044377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001044377 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b3
001044377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b4$$kFZJ
001044377 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b5$$kFZJ
001044377 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172811$$a HHU Düsseldorf$$b5
001044377 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001044377 9141_ $$y2025
001044377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044377 920__ $$lyes
001044377 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001044377 980__ $$aposter
001044377 980__ $$aVDB
001044377 980__ $$aUNRESTRICTED
001044377 980__ $$aI:(DE-Juel1)INM-7-20090406
001044377 9801_ $$aFullTexts