Prediction of Depression in Parkinson's Disease by prosodic speech features

Gianna Kuhles^{1,2}, Tabea Thies^{3,4}, Michael T. Barbe⁴, Simon B. Eickhoff^{1,2}, Julia A. Camilleri^{1,2}, & Susanne Weis^{1,2}

¹Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ²Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany ³Faculty of Arts and Humanities, IfL – Phonetics, University of Cologne, Köln, Germany ⁴Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Köln, Germany

Introduction

Depressive Disorders (DD):

Common comorbidity in PD that significantly reduces quality of life [1], [2]

Link:

Prosodic impairment & DD [3]

→ Speech parameters potential biomarkers for depression in PD [1]

Aim:

Identifying standardised, reliable prosodic features for the prediction of DD in PD

Feature Extraction

- 88 prosodic features extracted with the toolbox OpenSMILE [4]
- Categories: frequency, energy, spectral & temporal related variables

Classification

- Prediction of group (HC / PD) by prosodic speech features
- RepeatedKFold cross-validation with 5 repetitions of 5 folds, model Random Forest, performed in JuLearn [5]

Regression

- Prediction of individual BDI-II scores
- RepeatedKFold cross-validation with 5 repetitions of 5 folds, model Random Forest, performed in JuLearn [5]

Results Classification Accuracy Test Score = 0.997 **Feature Importance**

Variable

Discussion

Prediction

- Classification: The model effectively distinguishes between healthy individuals and those with PD
- Regression: Low accuracy for depressive disorder predictions highlights the complexity of using prosodic features in smaller samples

Limitations

- Larger, more diverse samples are essential to validate findings
- Results support the development of standardised methodologies for extracting speech-related biomarkers in PD

Outlook

- Speech biomarkers are particularly valuable due to their simple and inexpensive acquisition and non-invasive nature
- These biomarkers could improve the detection, understanding and treatment of DD in Parkinson's disease

References:

- [1] Pérez-Toro PA et al. Speech Commun. (2022) 145:10-20.
- [2] Balestrino R & Martinez-Martin P J. Neurol. Sci. (2017) 374: 3-8.
- [3] Vélez Feijó A et al. Neuro. Dis. Treat. (2008) 4:669-674. [4] Eyben F et al. ACM Multimedia (2010) 18:1459-1462.

g.kuhles@fz-juelich.de

[5] Hamdan S et al. Gigabyte (2024).

Acknowledgments:

This study was supported by

- the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2–1, EI 816/16-1 and EI
- the National Institute of Mental Health (R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human
- Brain",
- the Virtual Brain Cloud (EU H2020, no. 826421) & the National Institute on Aging (R01AG067103).

Current Project → **SpExNeuro**: