001044380 001__ 1044380
001044380 005__ 20250729202320.0
001044380 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03154
001044380 037__ $$aFZJ-2025-03154
001044380 041__ $$aEnglish
001044380 1001_ $$0P:(DE-Juel1)191583$$aVillamar, Jose$$b0$$eCorresponding author
001044380 1112_ $$a34th Annual Computational Neuroscience Meeting$$cFlorence$$d2025-07-05 - 2025-07-09$$gCNS$$wItaly
001044380 245__ $$aNEST GPU simulations scale up to networks of billions of spiking neurons and trillions of synapses
001044380 260__ $$c2025
001044380 3367_ $$033$$2EndNote$$aConference Paper
001044380 3367_ $$2BibTeX$$aINPROCEEDINGS
001044380 3367_ $$2DRIVER$$aconferenceObject
001044380 3367_ $$2ORCID$$aCONFERENCE_POSTER
001044380 3367_ $$2DataCite$$aOutput Types/Conference Poster
001044380 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1753785184_5604$$xAfter Call
001044380 502__ $$cRWTH Aachen
001044380 520__ $$aEfficient simulation of large-scale spiking neuronal networks is important for neuroscientific research, and both the simulation speed and the time it takes to instantiate the network in computer memory are key factors. NEST GPU is a GPU-based simulator under the NEST Initiative written in CUDA-C++ that demonstrates high simulation speeds with models of various network sizes on single-GPU and multi-GPU systems [1,2,3]. On the path toward models of the whole brain, neuroscientists show an increasing interest in studying networks that are larger by several orders of magnitude. Here, we show the performance of our simulation technology with a scalable network model across multiple network sizes approaching human cortex magnitudes.For this, we propose a novel method to efficiently instantiate large networks on multiple GPUs in parallel. Our approach relies on the deterministic initial state of pseudo-random number generators (PRNGs). While requiring synchronization of network construction directives between MPI processes and a small memory overhead, this approach enables dynamical neuron creation and connection at runtime. The method is evaluated through a two-population recurrently connected network model designed for benchmarking an arbitrary number of GPUs while maintaining first-order network statistics across scales.The benchmarking model was tested during an exclusive reservation of the LEONARDO Booster cluster. While keeping constant the number of neurons and incoming synapses to each neuron per GPU, we performed several simulation runs exploiting in parallel from 400 to 12,000 (full system) GPUs. Each GPU device contained approximately 281 thousand neurons and 3.1 billion synapses. Our results show network construction times of less than a second using the full system and stable dynamics across scales. At full system scale, the network model was composed of approximately 3.37 billion neurons and 37.96 trillion synapses (~25% human cortex).To conclude, our novel approach enabled network model instantiation of magnitudes nearing human cortex scale while keeping fast construction times, on average of 0.5s across trials. The stability of dynamics and performance across scales obtained in our model is a proof of feasibility paving the way for biologically more plausible and detailed brain scale models. [1] https://doi.org/10.3389/fncom.2021.627620 . [2] https://doi.org/10.3389/fninf.2022.883333 . [3] https://doi.org/10.3390/app13179598
001044380 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001044380 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001044380 536__ $$0G:(DE-Juel-1)HiRSE-20250220$$aHiRSE - Helmholtz Platform for Research Software Engineering (HiRSE-20250220)$$cHiRSE-20250220$$x2
001044380 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3
001044380 588__ $$aDataset connected to DataCite
001044380 7001_ $$0P:(DE-HGF)0$$aTiddia, Gianmarco$$b1
001044380 7001_ $$0P:(DE-HGF)0$$aSergi, Luca$$b2
001044380 7001_ $$0P:(DE-Juel1)186954$$aBabu, Pooja$$b3
001044380 7001_ $$aPontisso, Luca$$b4
001044380 7001_ $$aSimula, Francesco$$b5
001044380 7001_ $$aLonardo, Alessandro$$b6
001044380 7001_ $$aPastorelli, Elena$$b7
001044380 7001_ $$aPaolucci, Pier Stanislao$$b8
001044380 7001_ $$aGolosio, Bruno$$b9
001044380 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b10
001044380 8564_ $$uhttps://juser.fz-juelich.de/record/1044380/files/NEST_GPU_simulations_scale_up_to_networks_of_billions_of_spiking_neurons_and_trillions_of_synapses_JOSE_VILLAMAR.pdf$$yOpenAccess
001044380 909CO $$ooai:juser.fz-juelich.de:1044380$$popenaire$$popen_access$$pVDB$$pdriver
001044380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191583$$aForschungszentrum Jülich$$b0$$kFZJ
001044380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186954$$aForschungszentrum Jülich$$b3$$kFZJ
001044380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b10$$kFZJ
001044380 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001044380 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001044380 9141_ $$y2025
001044380 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044380 920__ $$lyes
001044380 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001044380 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001044380 980__ $$aposter
001044380 980__ $$aVDB
001044380 980__ $$aUNRESTRICTED
001044380 980__ $$aI:(DE-Juel1)IAS-6-20130828
001044380 980__ $$aI:(DE-Juel1)JSC-20090406
001044380 9801_ $$aFullTexts