001     1044380
005     20250729202320.0
024 7 _ |a 10.34734/FZJ-2025-03154
|2 datacite_doi
037 _ _ |a FZJ-2025-03154
041 _ _ |a English
100 1 _ |a Villamar, Jose
|0 P:(DE-Juel1)191583
|b 0
|e Corresponding author
111 2 _ |a 34th Annual Computational Neuroscience Meeting
|g CNS
|c Florence
|d 2025-07-05 - 2025-07-09
|w Italy
245 _ _ |a NEST GPU simulations scale up to networks of billions of spiking neurons and trillions of synapses
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1753785184_5604
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Efficient simulation of large-scale spiking neuronal networks is important for neuroscientific research, and both the simulation speed and the time it takes to instantiate the network in computer memory are key factors. NEST GPU is a GPU-based simulator under the NEST Initiative written in CUDA-C++ that demonstrates high simulation speeds with models of various network sizes on single-GPU and multi-GPU systems [1,2,3]. On the path toward models of the whole brain, neuroscientists show an increasing interest in studying networks that are larger by several orders of magnitude. Here, we show the performance of our simulation technology with a scalable network model across multiple network sizes approaching human cortex magnitudes.For this, we propose a novel method to efficiently instantiate large networks on multiple GPUs in parallel. Our approach relies on the deterministic initial state of pseudo-random number generators (PRNGs). While requiring synchronization of network construction directives between MPI processes and a small memory overhead, this approach enables dynamical neuron creation and connection at runtime. The method is evaluated through a two-population recurrently connected network model designed for benchmarking an arbitrary number of GPUs while maintaining first-order network statistics across scales.The benchmarking model was tested during an exclusive reservation of the LEONARDO Booster cluster. While keeping constant the number of neurons and incoming synapses to each neuron per GPU, we performed several simulation runs exploiting in parallel from 400 to 12,000 (full system) GPUs. Each GPU device contained approximately 281 thousand neurons and 3.1 billion synapses. Our results show network construction times of less than a second using the full system and stable dynamics across scales. At full system scale, the network model was composed of approximately 3.37 billion neurons and 37.96 trillion synapses (~25% human cortex).To conclude, our novel approach enabled network model instantiation of magnitudes nearing human cortex scale while keeping fast construction times, on average of 0.5s across trials. The stability of dynamics and performance across scales obtained in our model is a proof of feasibility paving the way for biologically more plausible and detailed brain scale models. [1] https://doi.org/10.3389/fncom.2021.627620 . [2] https://doi.org/10.3389/fninf.2022.883333 . [3] https://doi.org/10.3390/app13179598
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 1
536 _ _ |a HiRSE - Helmholtz Platform for Research Software Engineering (HiRSE-20250220)
|0 G:(DE-Juel-1)HiRSE-20250220
|c HiRSE-20250220
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Tiddia, Gianmarco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sergi, Luca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Babu, Pooja
|0 P:(DE-Juel1)186954
|b 3
700 1 _ |a Pontisso, Luca
|b 4
700 1 _ |a Simula, Francesco
|b 5
700 1 _ |a Lonardo, Alessandro
|b 6
700 1 _ |a Pastorelli, Elena
|b 7
700 1 _ |a Paolucci, Pier Stanislao
|b 8
700 1 _ |a Golosio, Bruno
|b 9
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 10
856 4 _ |u https://juser.fz-juelich.de/record/1044380/files/NEST_GPU_simulations_scale_up_to_networks_of_billions_of_spiking_neurons_and_trillions_of_synapses_JOSE_VILLAMAR.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044380
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 1
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21