001044387 001__ 1044387
001044387 005__ 20250722202240.0
001044387 0247_ $$2doi$$a10.48550/ARXIV.2507.12113
001044387 037__ $$aFZJ-2025-03158
001044387 1001_ $$0P:(DE-HGF)0$$aKern, Christian S.$$b0$$eFirst author
001044387 245__ $$aCircular dichroism in the photoelectron angular distribution of achiral molecules
001044387 260__ $$barXiv$$c2025
001044387 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1753187828_27768
001044387 3367_ $$2ORCID$$aWORKING_PAPER
001044387 3367_ $$028$$2EndNote$$aElectronic Article
001044387 3367_ $$2DRIVER$$apreprint
001044387 3367_ $$2BibTeX$$aARTICLE
001044387 3367_ $$2DataCite$$aOutput Types/Working Paper
001044387 520__ $$aCircular dichroism in the angular distribution (CDAD) is the effect that the angular intensity distribution of photoemitted electrons depends on the handedness of the incident circularly polarized light. A CDAD may arise from intrinsic material properties like chirality, spin-orbit interaction, or quantum-geometrical effects on the electronic structure. In addition, CDAD has also been reported for achiral organic molecules at the interface to metallic substrates. For this latter case, we investigate two prototypical $π$-conjugated molecules, namely tetracene and pentacene, whose frontier orbitals have a similar shape but exhibit distinctly different symmetries. By comparing experimental CDAD momentum maps with simulations within time-dependent density functional theory, we show how the final state of the photoelectron must be regarded as the source of the CDAD in such otherwise achiral systems. We gain additional insight into the mechanism by employing a simple scattering model for the final state, which allows us to decompose the CDAD signal into partial wave contributions.
001044387 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001044387 536__ $$0G:(EU-Grant)101071259$$aOrbital Cinema - Photoemission Orbital Cinematography: An ultrafast wave function lab (101071259)$$c101071259$$fERC-2022-SYG$$x1
001044387 588__ $$aDataset connected to DataCite
001044387 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001044387 650_7 $$2Other$$aFOS: Physical sciences
001044387 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b1
001044387 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b2
001044387 7001_ $$0P:(DE-Juel1)175513$$aMearini, Simone$$b3$$ufzj
001044387 7001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b4
001044387 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b5$$ufzj
001044387 7001_ $$0P:(DE-HGF)0$$aDe Giovannini, Umberto$$b6
001044387 7001_ $$0P:(DE-HGF)0$$aRubio, Angel$$b7
001044387 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b8
001044387 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b9
001044387 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b10$$ufzj
001044387 7001_ $$0P:(DE-HGF)0$$aPuschnig, Peter$$b11$$eCorresponding author
001044387 773__ $$a10.48550/ARXIV.2507.12113
001044387 8564_ $$uhttps://arxiv.org/abs/2507.12113
001044387 909CO $$ooai:juser.fz-juelich.de:1044387$$popenaire$$pVDB$$pec_fundedresources
001044387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175513$$aForschungszentrum Jülich$$b3$$kFZJ
001044387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b5$$kFZJ
001044387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b8$$kFZJ
001044387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b10$$kFZJ
001044387 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001044387 9141_ $$y2025
001044387 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001044387 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
001044387 980__ $$apreprint
001044387 980__ $$aVDB
001044387 980__ $$aI:(DE-Juel1)PGI-3-20110106
001044387 980__ $$aI:(DE-Juel1)PGI-6-20110106
001044387 980__ $$aUNRESTRICTED