001     1044387
005     20250722202240.0
024 7 _ |a 10.48550/ARXIV.2507.12113
|2 doi
037 _ _ |a FZJ-2025-03158
100 1 _ |a Kern, Christian S.
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Circular dichroism in the photoelectron angular distribution of achiral molecules
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1753187828_27768
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Circular dichroism in the angular distribution (CDAD) is the effect that the angular intensity distribution of photoemitted electrons depends on the handedness of the incident circularly polarized light. A CDAD may arise from intrinsic material properties like chirality, spin-orbit interaction, or quantum-geometrical effects on the electronic structure. In addition, CDAD has also been reported for achiral organic molecules at the interface to metallic substrates. For this latter case, we investigate two prototypical $π$-conjugated molecules, namely tetracene and pentacene, whose frontier orbitals have a similar shape but exhibit distinctly different symmetries. By comparing experimental CDAD momentum maps with simulations within time-dependent density functional theory, we show how the final state of the photoelectron must be regarded as the source of the CDAD in such otherwise achiral systems. We gain additional insight into the mechanism by employing a simple scattering model for the final state, which allows us to decompose the CDAD signal into partial wave contributions.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a Orbital Cinema - Photoemission Orbital Cinematography: An ultrafast wave function lab (101071259)
|0 G:(EU-Grant)101071259
|c 101071259
|f ERC-2022-SYG
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 1
700 1 _ |a Zamborlini, Giovanni
|0 P:(DE-Juel1)162281
|b 2
700 1 _ |a Mearini, Simone
|0 P:(DE-Juel1)175513
|b 3
|u fzj
700 1 _ |a Jugovac, Matteo
|0 P:(DE-Juel1)169309
|b 4
700 1 _ |a Feyer, Vitaliy
|0 P:(DE-Juel1)145012
|b 5
|u fzj
700 1 _ |a De Giovannini, Umberto
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rubio, Angel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 10
|u fzj
700 1 _ |a Puschnig, Peter
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2507.12113
856 4 _ |u https://arxiv.org/abs/2507.12113
909 C O |o oai:juser.fz-juelich.de:1044387
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)175513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21