001044393 001__ 1044393 001044393 005__ 20250813203213.0 001044393 0247_ $$2doi$$a10.1038/s44306-025-00090-3 001044393 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03159 001044393 037__ $$aFZJ-2025-03159 001044393 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj 001044393 245__ $$aTopological magnetism in diluted artificial adatom lattices 001044393 260__ $$a[London]$$b[Nature Publishing Group UK]$$c2025 001044393 3367_ $$2DRIVER$$aarticle 001044393 3367_ $$2DataCite$$aOutput Types/Journal article 001044393 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754888248_10044 001044393 3367_ $$2BibTeX$$aARTICLE 001044393 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001044393 3367_ $$00$$2EndNote$$aJournal Article 001044393 520__ $$aThe ability to control matter at the atomic scale has revolutionized our understanding of the physical world, opening doors to unprecedented technological advancements. Quantum technology, which harnesses the unique principles of quantum mechanics, enables us to construct and manipulate atomic structures with extraordinary precision. Here, we propose a bottom-up approach to create topological magnetic textures in diluted adatom lattices on the Nb(110) surface. By fine-tuning adatom spacing, previously inaccessible magnetic phases can emerge. Our findings reveal that interactions between magnetic adatoms, mediated by the Nb substrate, foster the formation of unique topological spin textures, such as skyrmions and anti-skyrmions, both ferromagnetic and antiferromagnetic. Since Nb can be superconducting, our findings present a novel platform with valuable insights into the interplay between topological magnetism and superconductivity. This work, therefore, paves the way for broader exploration of topological superconductivity in conjunction with spintronics applications. 001044393 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0 001044393 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001044393 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b1$$eCorresponding author$$ufzj 001044393 773__ $$0PERI:(DE-600)3179903-6$$a10.1038/s44306-025-00090-3$$gVol. 3, no. 1, p. 30$$n1$$p30$$tnpj spintronics$$v3$$x2948-2119$$y2025 001044393 8564_ $$uhttps://www.nature.com/articles/s44306-025-00090-3#citeas 001044393 8564_ $$uhttps://juser.fz-juelich.de/record/1044393/files/s44306-025-00090-3.pdf$$yOpenAccess 001044393 909CO $$ooai:juser.fz-juelich.de:1044393$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 001044393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ 001044393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b1$$kFZJ 001044393 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 001044393 9141_ $$y2025 001044393 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001044393 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001044393 920__ $$lyes 001044393 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001044393 980__ $$ajournal 001044393 980__ $$aVDB 001044393 980__ $$aUNRESTRICTED 001044393 980__ $$aI:(DE-Juel1)PGI-1-20110106 001044393 9801_ $$aFullTexts