001     1044393
005     20250813203213.0
024 7 _ |a 10.1038/s44306-025-00090-3
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03159
|2 datacite_doi
037 _ _ |a FZJ-2025-03159
100 1 _ |a Aldarawsheh, Amal
|0 P:(DE-Juel1)185991
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Topological magnetism in diluted artificial adatom lattices
260 _ _ |a [London]
|c 2025
|b [Nature Publishing Group UK]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754888248_10044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to control matter at the atomic scale has revolutionized our understanding of the physical world, opening doors to unprecedented technological advancements. Quantum technology, which harnesses the unique principles of quantum mechanics, enables us to construct and manipulate atomic structures with extraordinary precision. Here, we propose a bottom-up approach to create topological magnetic textures in diluted adatom lattices on the Nb(110) surface. By fine-tuning adatom spacing, previously inaccessible magnetic phases can emerge. Our findings reveal that interactions between magnetic adatoms, mediated by the Nb substrate, foster the formation of unique topological spin textures, such as skyrmions and anti-skyrmions, both ferromagnetic and antiferromagnetic. Since Nb can be superconducting, our findings present a novel platform with valuable insights into the interplay between topological magnetism and superconductivity. This work, therefore, paves the way for broader exploration of topological superconductivity in conjunction with spintronics applications.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s44306-025-00090-3
|g Vol. 3, no. 1, p. 30
|0 PERI:(DE-600)3179903-6
|n 1
|p 30
|t npj spintronics
|v 3
|y 2025
|x 2948-2119
856 4 _ |u https://www.nature.com/articles/s44306-025-00090-3#citeas
856 4 _ |u https://juser.fz-juelich.de/record/1044393/files/s44306-025-00090-3.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044393
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185991
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21