001     1044397
005     20250721202237.0
037 _ _ |a FZJ-2025-03163
100 1 _ |a Schweika, W.
|0 P:(DE-Juel1)130963
|b 0
|u fzj
111 2 _ |a The International Conference on Neutron Scattering
|g ICNS
|c Bella Center in Copenhagen, Denmark, with the last day at the European Spallation Source (ESS) in nearby Lund, Sweden
|d 2025-07-06 - 2025-07-10
|w Denmark
245 _ _ |a Spherical neutron polarimetry at MAGiC
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1753093695_26185
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The instrument MAGIC at ESS has been designed with an option for longitudinal XYZ polarisation analysis, highly performing in a wavelength band from 2 to 6 Å. A novel extension to the instrument MAGIC will be spherical neutron polarimetry. To date spherical neutron polarimetry has been routinely established only in zero-field techniques, e.g. Cryopad[1], for measuring the full polarisation tensor for single Bragg peaks on monochromatic instruments. Here we present a more powerful alternative route to spherical polarimetry based on a precession technique [2,3] that can be fully adapted to a pulsed, polychromatic neutron beam and enables us to cover simultaneously a large section of the reciprocal space in time-of-flight Laue diffraction. Implementing spherical polarimetry by precession on the instrument MAGIC requires precise magnetic field design. Two coils in the incoming beam path rotate the polarisation with respect to the field axis, determining inclination and precession angles. Both coils are ramped in time according to the neutrons’ speed. A common phase angle is achieved by an additional, time-independent spin-echo coil. Full simulations of the polarised neutron transport on the instrument MAGIC not only demonstrate the feasibility of spherical polarimetry but also its excellent performance. [1] F. Tasset, Zero field neutron polarimetry. Physica B: Cond. Mat. 156, 627-630 (1989).[2] W. Schweika, Time-of-flight and vector polarization analysis for diffuse neutron scattering. Physica B: Cond. Mat. 335,157 -163 (2003).[3] W. Schweika, S. Easton and K.U. Neumann. Vector Polarization Analysis on DNS. Neutron News, 16(2), 14-17 (2005).
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Vasiukov, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Soltner, H.
|0 P:(DE-Juel1)133754
|b 2
|u fzj
700 1 _ |a Fabrèges, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lee, W.
|0 P:(DE-HGF)0
|b 4
909 C O |o oai:juser.fz-juelich.de:1044397
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133754
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ITE-20250108
|k ITE
|l Institute of Technology and Engineering
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ITE-20250108
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21