001     1044402
005     20250804115222.0
024 7 _ |a 10.1007/s11128-025-04743-4
|2 doi
024 7 _ |a 1570-0755
|2 ISSN
024 7 _ |a 1573-1332
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03166
|2 datacite_doi
024 7 _ |a WOS:001485851800001
|2 WOS
037 _ _ |a FZJ-2025-03166
082 _ _ |a 004
100 1 _ |a Montañez-Barrera, J. A.
|0 P:(DE-Juel1)194305
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Transfer learning of optimal QAOA parameters in combinatorial optimization
260 _ _ |a Dordrecht
|c 2025
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754037280_24662
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solving combinatorial optimization problems (COPs) is a promising application ofquantum computation, with the quantum approximate optimization algorithm (QAOA)being one of the most studied quantum algorithms for solving them. However, multiple factors make the parameter search of the QAOA a hard optimization problem. Inthis work, we study transfer learning (TL), a methodology to reuse pre-trained QAOAparameters of one problem instance into different COP instances. This methodologycan be used to alleviate the necessity of classical optimization to find good parametersfor individual problems. To this end, we select small cases of the traveling salesman problem (TSP), the bin packing problem (BPP), the knapsack problem (KP),the weighted maximum cut (MaxCut) problem, the maximal independent set (MIS)problem, and portfolio optimization (PO), and find optimal β and γ parameters forp layers. We compare how well the parameters found for one problem adapt to theothers. Among the different problems, BPP is the one that produces the best transferable parameters, maintaining the probability of finding the optimal solution abovea quadratic speedup over random guessing for problem sizes up to 42 qubits andp = 10 layers. Using the BPP parameters, we perform experiments on IonQ Harmony and Aria, Rigetti Aspen-M-3, and IBM Brisbane of MIS instances for up to 18qubits. The results indicate that IonQ Aria yields the best overlap with the ideal probability distribution. Additionally, we show that cross-platform TL is possible using theD-Wave Advantage quantum annealer with the parameters found for BPP. We showan improvement in performance compared to the default protocols for MIS with up to170 qubits. Our results suggest that there are QAOA parameters that generalize wellfor different COPs and annealing protocols.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 2
|u fzj
773 _ _ |a 10.1007/s11128-025-04743-4
|g Vol. 24, no. 5, p. 129
|0 PERI:(DE-600)2088114-9
|n 5
|p 129
|t Quantum information processing
|v 24
|y 2025
|x 1570-0755
856 4 _ |u https://juser.fz-juelich.de/record/1044402/files/2402.05549v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044402
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b QUANTUM INF PROCESS : 2022
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21