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Solving combinatorial optimization problems (COPs) is a promising application of quantum com-
putation, with the Quantum Approximate Optimization Algorithm (QAOA) being one of the most
studied quantum algorithms for solving them. However, multiple factors make the parameter search
of the QAOA a hard optimization problem. In this work, we study transfer learning (TL), a method-
ology to reuse pre-trained QAOA parameters of one problem instance into different COP instances.
This methodology can be used to alleviate the necessity of classical optimization to find good param-
eters for individual problems. To this end, we select small cases of the traveling salesman problem
(TSP), the bin packing problem (BPP), the knapsack problem (KP), the weighted maximum cut
(MaxCut) problem, the maximal independent set (MIS) problem, and portfolio optimization (PO),
and find optimal β and γ parameters for p layers. We compare how well the parameters found for
one problem adapt to the others. Among the different problems, BPP is the one that produces the
best transferable parameters, maintaining the probability of finding the optimal solution above a
quadratic speedup over random guessing for problem sizes up to 42 qubits and p = 10 layers. Using
the BPP parameters, we perform experiments on IonQ Harmony and Aria, Rigetti Aspen-M-3, and
IBM Brisbane of MIS instances for up to 18 qubits. The results indicate that IonQ Aria yields the
best overlap with the ideal probability distribution. Additionally, we show that cross-platform TL
is possible using the D-Wave Advantage quantum annealer with the parameters found for BPP. We
show an improvement in performance compared to the default protocols for MIS with up to 170
qubits. Our results suggest that there are QAOA parameters that generalize well for different COPs
and annealing protocols.

Keywords: QUBO; transfer learning; knapsack; bin packing; portfolio optimization; TSP; maxcut; MIS; quan-
tum optimization; QAOA; combinatorial optimization.

I. INTRODUCTION

Solving COPs is perceived as one of the major applica-
tions for the near future of quantum computation. There
are three main reasons for this. First, COPs can be effec-
tively encoded in Hamiltonians, where the ground state
corresponds to the optimal solution of the problem [1, 2].
Second, COPs have practical applications and are hard
to solve [3]. Third, quantum algorithms to solve these
problems need few resources and can be tested on cur-
rent state-of-the-art quantum hardware [4–6].

One of the most studied quantum algorithms for solv-
ing COPs is QAOA [7]. QAOA consists of p layers, each
of which includes the COP cost Hamiltonian encoded
in a parametric unitary gate with parameters γi and a
“mixer” parametric unitary gate with parameters βi. In
this context, the parameters are adjusted to improve the
probability of finding good solutions to the problem. Dif-
ferent techniques have been proposed to improve the per-
formance of QAOA. For example, warm-start [8–10] is
used to adjust QAOA in order to start it from solutions

∗ Corresponding author: J. A. Montañez-Barrera; j.montanez-
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obtained by classical algorithms or recursive QAOA [11]
which uses the QAOA to produce sequences of reduced
problems. In [12, 13] are reviews of different techniques
used in QAOA. To some extent, QAOA can be seen as a
trotterized quantum annealing protocol where the num-
ber of layers p determines the precision of the solution
[14, 15].

The most used technique to find the γ and β param-
eters in QAOA consists of a subroutine of classical opti-
mization where QAOA provides samples used to obtain
the expectation value of the cost Hamiltonian. Subse-
quently, a classical solver produces new γ and β param-
eters to minimize the expectation value. This process is
repeated until a good set of parameters is found or other
stopping criteria is reached. There are many limitations
to this approach, e.g., finding the optimal set ofparame-
ters has been proved to be an NP-Hard problem [16, 17].
Additionally, the energy landscape of the parameterized
QAOA has many local minima where classical solvers can
easily get trapped [16, 18]. Moreover, implementations
on real hardware face an even greater challenge, the noise
inherent in current quantum devices makes the search for
the minima of the objective function unfeasible after only
a few QAOA layers [19, 20].

An alternative strategy that partially overcomes these
problems and has gained attention recently is the use
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of transferred parameters [21–23]. The idea is to find a
good set of parameters using the classical optimization
loop for small instances of a problem, where it is eas-
ier to find good parameters, and then, reuse them on
larger instances. For instance, in [24], TL of 3-regular
graphs in the MaxCut problem was initially introduced
as an alternative to do extensive classical optimization
for the QAOA parameters. Subsequently, [25] extended
this concept to non-isomorphic unweighted graphs in the
MaxCut problem and showed optimal QAOA parameter
concentration for large graphs. In [26], different prop-
erties of random graphs in the MaxCut problem were
identified as indicative characteristics of parameter trans-
ferability. In [27], numerical evidence supporting an ap-
proximation ratio exceeding the worst-case scenario by
Goemans-Williamson (GW) was presented for parame-
ters transferred in 3-regular graphs of MaxCut, specifi-
cally for p < 12. Furthermore, [6] provided indications of
TL capabilities in the context of the weighted MaxCut
problem. However, the prospects of TL between different
COPs have not been systematically investigated to this
point.

In this paper, we extend the study of TL capabilities of
optimal QAOA parameters across different COPs. This
is motivated by the fact that finding a good set of param-
eters that works for different COPs, independent of their
construction or problem size, can be used in larger prob-
lems or as an initial guess for doing a subsequent classical
optimization on specific problem instances. This initial
guess is therefore not biased by the given problem class or
specific instance. To this end, we select random instances
of TSP, KP, BPP, PO, MaxCut, and MIS. We first use
the Constrained Optimization BY Linear Approximation
(COBYLA) [28] optimization method to find β and γ pa-
rameters for problems with up to 20 qubits.

We study the transfer of those parameters to (i) the
same COP with up to 42 qubits and (ii) other ran-
dom instances of completely different COPs. We thereby
demonstrate that parameters can not only be transferred
to larger instances of the same problem but also to com-
pletely different problems. We use the probability of find-
ing the ground state, probability(∗x), as the performance
metric of the TL methodology. Of all the COPs studied,
BPP is the one that shows the best TL capabilities.

Furthermore, we study the practical TL perfor-
mance on various quantum technology platforms, namely
Aspen-M3 from Rigetti, Harmony and Aria from IonQ,
and ibm brisbane from IBM with problem sizes 8, 14, and
18 qubits. We present solutions for the MIS using QAOA
with p=10 and TL from BPP. Our results suggest that
even in the 14 qubit case for QAOA with p=10, which
corresponds to 640 CNOT gates, a positive net gain of
TL may still be observable using IonQ Aria.

Additionally, we explore “cross-platform TL”, by
transferring the QAOA protocol to a quantum anneal-
ing protocol. To this end, we use a D-Wave quantum
annealer [29, 30], D-Wave Advantage, with a modified
custom anneal schedule that reflects the learned TL pa-

rameters to mimic the QAOA β and γ parameters sep-
arately. We study MIS from 100 to 170 qubits and find
that the TL protocol of the β parameters performs con-
sistently better than the default D-Wave Advantage an-
nealing protocol for this particular problem.
The rest of the paper is organized as follows. Sec-

tion II provides a description of the COPs used in this
work, the TL methodology, the postprocessing tech-
nique for the real hardware implementation to miti-
gate some of the noise, and a description of the cross-
platform TL approach. In Sec. III we present our re-
sults and a discussion. Finally, Sec. IV contains our
conclusions. The source code for the results shown here
can be found at https://jugit.fz-juelich.de/qip/
transfer-learning-QAOA.

II. TRANSFER LEARNING IN QAOA

In the context of QAOA, we refer to TL as the
use of pre-optimized γ = [γ0, γ1, ..., γp−1] and β =
[β0, β1, ..., βp−1] for parameters on problems that were
not used for the optimization. In this methodology, the
first step is to find an optimal set of parameters that
works well for a specific problem. Then, we test if the
optimized parameters work well on different instances of
the same and other problems.
We study random instances of TSP, BPP, MIS, KP,

PO, and MaxCut using QAOA with p = 10. We employ
a quantum annealing initialization of the QAOA param-
eters [19, 31]. To find the minimum of the cost function,
COBYLA is used with a maximum number of iterations
given by max iter = 20Nqp, where Nq is the number of
qubits needed by the problem and p is the number of
QAOA layers. Fig. (1) shows the methodology used for
(a) the initialization of the γ and β parameters on the
problem selected, (b) the loop of self-optimization where
the parameters are updated improving the expectation
value of the cost Hamiltonian of the problem, and (c)
the TL of the parameters from the problem (BPP) on a
new problem – in this case, the MIS. If the TL is suc-
cessful, the QAOA circuit should sample good solutions
for the new problem.
We pick 5 random instances for each problem size. For

the TSP, we use instances with 3, 4, 5, and 6 cities (9,
16, 25, and 36 qubits), where the distances between cities
are randomly chosen from a normal distribution with a
mean value of 10 and a standard deviation of 0.1. This
set of values is chosen because it has been shown to pro-
duce hard instances of the TSP [32]. In the BPP, we
consider scenarios involving 3, 4, 5, and 6 items (12, 20,
30, and 42 qubits). The weight of each item is randomly
chosen from integer values between 1 and 10, and 20 is
the maximum weight of the bins. The MaxCut, MIS,
KP, and PO problem sizes are 4, 6, 8, 10, 12, 14, 16,
18, 20, 25, 30, 35, 40, and 42. For MaxCut problems, we
use randomly weighted edges with weights between 0 and
1 and a probability of having an edge between any two

https://jugit.fz-juelich.de/qip/transfer-learning-QAOA
https://jugit.fz-juelich.de/qip/transfer-learning-QAOA
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FIG. 1. Example of the TL methodology for transferring the parameters from BPP to MIS. (a) Quantum annealing initialization
of the QAOA parameters for p = 10 layers using the BPP, (b) self-optimization step using QAOA, (c) final β and γ parameters
transferred to the MIS problem.

vertices as 70%. In MIS problems, edges between nodes
are randomly selected with a 50% probability of having
an edge. For KP problems, item values are randomly
chosen from integer values between 5 to 63, weights from
1 to 20, and the maximum weight is set to half of the
sum of all weights. Finally, for PO, correlation matrix
values are chosen randomly from [−0.1, 0, 0.1, 0.2], as-
set costs varying between 0.5 and 1.5, and the budget
is set to half of the total assets cost. For large prob-
lems, we simulate them using JUQCS–G software [15]
on JUWELS Booster, a cluster of 3744 NVIDIA A100
Tensor Core GPUs, integrated into the modular super-
computer JUWELS [33, 34].

For the inequality constraints in the KP, PO, and BPP,
we use the unbalanced penalization approach [35, 36].
Once the QUBO is generated with quadratic penalization
terms and translated to the Ising Hamiltonian represen-
tation, the Hamiltonian is normalized in all the cases.
This step is helpful to bring the problem Hamiltonian to
a similar range of energy. A similar procedure is used by
D-Wave annealers with the auto scale functionality [37].
In Appendix A, we explain in detail the problems and
the parameters used in this work.

To quantify the performance of TL, we use the proba-
bility of success, probability(∗x). This is calculated from
the final state vector |ψ⟩ (after the QAOA protocol has
been implemented) given by

|ψ⟩ =
∑

x∈{0,1}n

αx|x⟩, (1)

where n is the number of qubits involved. The proba-
bility of success is calculated by

probability(∗x) =
∑

xi∈∗x

|αxi |2, (2)

where ∗x is the set of all the optimal solutions of the
given problem. The set of ∗x solutions has been pre-
viously obtained using the classical solver CPLEX [38].
Note that the probability(∗x) is preferred here instead of
the approximation ratio r as it has been shown that r
can be a misleading metric in constrained problems [39].

Mitigation: Hamming distance 1

Our approach uses the Hamming distance 1 strategy
as a post-processing technique to reduce errors in real
quantum devices. This involves applying a bitflip to each
position within the output bit-string, to mitigate single-
qubit bitflips. The computational overhead of this post-
processing method is linear, O(NNq), where N represents
the number of samples and Nq is the number of qubits.
It is important to note that the success of this method
in improving the probability of the ground state relies
on the large probability of obtaining the ground state
compared to the number of samples used. Also, the error
must be low enough to have only a single qubit error in
the samples.

Cross-platform TL

In addition to TL between COPs, we also investigate
the possibility of applying TL across platforms. In the
case of quantum annealing, we want to test the capabil-
ities to transfer the QAOA parameters for solving COPs
using D-Wave Advantage. The default quantum anneal-
ing protocol on D-Wave Advantage, as proposed by John-
son et al. [40], is represented by
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H(s) = −A(s)
2

∑
i

σi
x +

B(s)

2
Hc, (3)

where s ∈ [0, 1] is a parameter that represents normal-
ized time, Hc is the problem cost Hamiltonian (see Ap-
pendix A for details), A(s) is the annealing protocol as-
sociated to the mixer, B(s) is the annealing protocol of
the cost Hamiltonian, and σi

x is the Pauli-x matrix for
qubit i. The D-Wave device has hardware-dependent,
fixed annealing functions A(s) and B(s) that cannot be
changed. They are documented in spreadsheets that can
be found for each device in the online D-Wave documen-
tation. What can be changed by the user, however, is the
mapping s(t) between the normalized annealing fraction
s ∈ [0, 1] and the real-time t ∈ [500 ns, 2000µs]. The
value of s is given by si = ti/tf , where ti is the in-
stantaneous real time and tf is the total annealing time.
D-Wave Advantage allows modification of the annealing
schedule by specifying a maximum of 12 points for the re-
lation si = f(ti) between a normalized time and instanta-
neous real-time. This flexibility enables us to implement
a custom schedule for A(s) or B(s). For example, Fig. 2
shows a new relationship between the s(ti) and the time
ti. Hence, what originally happened at t = 5.57µs in
the default schedule now happens at t = 2.2µs in the
modified schedule.‘ We utilize parameters from the TL
parameters of QAOA to modify the quantum annealing
schedule on a D-Wave quantum annealer.

5.572.22

FIG. 2. D-Wave modified schedule example. The circles
represent the modified point in the realtion between si and
ti.

III. RESULTS

In this section, we first study, by numerical simula-
tion, TL from one COP to another COP. Using the
best parameters, we then perform experiments on var-
ious quantum hardware devices. Finally, we investigate

cross-platform TL, i.e., we learn parameters using a gate-
based quantum computing model and then transfer them
to a physical device implementing the quantum annealing
model.
The initialization used for all problems was a linear

ramp quantum annealing scheme (see Fig. 3 (a)). Fig. 3
(b) shows the final γ and β parameters of a random in-
stance of the BPP. These parameters are used in subse-
quent plots to show the capabilities of TL from the BPP.

(a) (b)

FIG. 3. Example for the QAOA parameter optimization of
the BPP. (a) Quantum annealing initialization of the QAOA
parameters for p = 10 layers, and (b) final βi and γi for
i = 0, ..., p− 1 angles for the BPP with 3 items (12 qubits).

Figure 4 shows the classical optimization evolution for
(a) BPP and (b)-(c) MaxCut problem using QAOA with
p = 10. The cost represents the Hamiltonian energy at
the given iteration. The optimization process effectively
helps to improve the γ and β parameters reducing the
average cost for both problems. The final schedules in
the inset of Fig. 4(a)-(b) seem to differ in magnitude but
some characteristics from the initial annealing schedule
are conserved, i.e., β goes down to 0 and γ goes up to
some value. Fig. 4-(c) shows the cost for the different
seeds of problems sizes 10 and 14 qubits. For problem size
10 qubits, the optimization process seems not to have an
effect after 500 iterations while for 3 out of 5 cases of
the 14-qubit problems the optimization is still effective
after 1000 iterations. This suggests that the number of
iterations to find QAOA parameters is not only affected
by p but also by the number of qubits.
Figure 5 shows a comparison between TL from a BPP

with 3 items vs. self-optimization for the mean value of
the optimal probability(∗x) of the different COPs. Self-
optimization refers to the optimization of the γ and β pa-
rameters for each specific problem using COBYLA with
a maximum number of iterations given by max iter =
20pNq, where Nq is the number of qubits and p the num-
ber of QAOA layers. The election of max iter is ar-
bitrary with the main objective of setting a maximum
number of iterations equal for problems with the same
size. However, it could be beneficial for some of them to
have more iterations while for others there is no improve-
ment after a few hundred iterations.
The guiding black dotted line indicates a quadratic

speedup over random guessing, i.e., a reduction in the
search space to O(2Nq/2). The trend for all problems us-
ing QAOA is better than a quadratic speedup over ran-
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(a) (b) (c)

FIG. 4. (a)-(b)Classical optimization of the cost function value at each iteration for a random 12 qubit (3 items) BPP problem
and 12 nodes MaxCut problem. (a) BPP (b) MaxCut. The inset plot shows the final parameters found for each problem. The
maximum number of iterations is 2400. (c) MaxCut cost function versus the number of iterations for the classical optimization
for problem sizes 10 and 14 qubits. Different lines represent the different seeds.

dom guessing. Comparing self-optimization and trans-
fer learning, the probability of success is slightly bet-
ter for the self-optimization method. However, this
improvement does not fully compensate for the re-
sources spent in the self-training step. For instance,
the number of samples required to observe the op-
timal solution with a 99% probability, N99%

samples =

log (1− 0.99)/ log (1− probability(∗x)), for the 14-qubit

(18-qubit) MaxCut, is on average N99%
samples = 16 (28)

for self-optimization and N99%
samples = 20 (41) for TL.

The largest difference in number of samples is for 20-
qubit BPP with N99%

samples = 339 for self-optimization and

N99%
samples = 848 for TL. The number of iterations times

the samples per iteration needs to be taken into account
to get an estimate of the resources needed.

Figure 6 shows the results of applying TL to larger
BPP problems with up to 42 qubits, i.e., we take the re-
sulting 12-qubit parameters and apply the same QAOA
schedule to significantly larger problems. The mean
probability of success is above a quadratic speedup over
random guessing for all the problems, which is a good
indication of the generalization capabilities of the trans-
ferred BPP parameters. The best performance and
scaling trend are given by the KP. This scaling is not
necessarily related to the TL capabilities because self-
optimization shows a similar performance up to the size
tested. The improvement could be related to the KP en-
ergy structure. The lowest performance is for the Max-
Cut problem with an error bar going below the quadratic
speedup over random guessing. For this problem, the
scaling below 18 qubits seems similar to that of the KP,
however, as the problem grows in size, the scaling trend
changes considerably. It could be related to the maxi-
mum values of β and γ, and these values could be rescaled
as the problem size grows, similar to the rescaling in [21].
The other problems seem to have similar performance
that holds as the problem size grows.

Figure 7 shows the results of applying TL from differ-
ent COPs to the 5 random instances from 4 to 18 qubits

4 8 12 16 20
num. qubits

10 3

10 2

10 1

100

pr
ob

ab
ilit

y 
(* x

)

MIS
BPP

TSP
PO

KP
MaxCut

1/2Nq/2

Self-Optimization

FIG. 5. Comparison between TL (solid line) and self-
optimization (dashed line) for different COPs (see legend).
Here, each marker represents the mean value over 5 random
cases. The dashed lines with small markers represent the
problems optimized using the procedure in Sec. II, and the
solid lines with big markers represent the results of applying
TL from the BPP. The quadratic speedup over random guess-
ing (black dotted line) is presented as a guiding line.

of (a) the MIS and (b) MaxCut. In Fig. 7 (a), we see
that the best performance is obtained by TL parameters
from an MIS instance (triangle-up) or a BPP instance
(triangle-right). The first can be explained by the fact
that different instances of the same problem (MIS) have
similar Hamiltonian structures. However, the favorable
results for the BPP constitute an interesting empirical
observation with no obvious explanation for its general-
ization capabilities. Figure 7(b) shows that this observa-
tion also holds when transferring to the MaxCut problem,
i.e., the best performance is obtained by TL from Max-
Cut to MaxCut (star) or again from BPP to MaxCut
(triangle-right).
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2 6 10 14 18 22 26 30 34 38 42
num. qubits

10 6

10 4
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100
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1/2Nq/2

MIS
BPP
TSP
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KP

MaxCut

FIG. 6. TL from BPP of 3 items to different COPs. Shown is
the mean value of 5 random instances of each problem size of
the different COPs. Markers represent the mean value. Error
bars represent quartiles Q1 and Q3. The guiding line is the
same as in Fig. 5.

Solutions on quantum hardware

Next, we show how TL behaves when executing the
QAOA algorithm for p = 10 on real quantum hardware
using the BPP parameters from Fig. 3 (b). The problem
used is the MIS for random problems with sizes 8, 14, and
18 qubits. The number of samples used is 1000 for the 8
qubit devices and 5000 for the 14 and 18 qubit devices.

In Fig. 8 (a), we show results for solving an 8-qubit
MIS problem on Rigetti’s Aspen-M-3 (2.9%, 27.9%),
IBM’s Brisbane (4.7% raw, 32.5%), IonQ’s Harmony
(3%, 21.2%), IonQ’s Aria-1 (34.8%, 81.5%), an ideal
simulator (89.1%, 94.0%), and random sampling (2.4%,
21%). In this problem, there are 240 CNOT gates on a
fully connected device. We can see that at these large
circuit depths, Aria is the only device with a distribu-
tion resembling the ideal case; all others are similar to a
random bitstring generator.

In Fig. 8 (b), we show results for solving a 14-qubit MIS
problem on Rigetti’s Aspen-M-3 (0.0%, 0.2%), IBM’s
Brisbane (0.06%, 0.16%), IonQ’s Aria-1 (4.46%, 12.3%),
the ideal simulator (19.8%, 30.7%), and a Random Sam-
pler (0%, 0.22%). The probability of connection be-
tween different nodes is set to 40%, and 640 CNOT gates
are applied on a fully connected quantum device. Once
again, the results indicate that the probability distribu-
tion of the ideal case is very different from the Brisbane
and Aspen-M-3 results, whereas for Aria the resemblance
with the ideal case is still observable.

Finally, in Fig. (8)-(c) we show results for solving an
18-qubit MIS problem on Rigetti’s Aspen-M-3 (0.03%,
0.34%), IBM’s Brisbane (0.0%, 0.03%), the ideal sim-
ulator (24.1%, 34.8%), and a Random Sampler (0.0%,

(a)

(b)

FIG. 7. TL from different COPs to (a) the MIS problem,
(b) the MaxCut problem. Using the γp and βp parameters
from different COPs, 5 random instances for each problem
size of the MIS are solved. Markers represent the median
value and error bars represent the Q1 and Q3 quartiles. The
insets represent one instance of the respective problem solved
using the TL parameters of the other COPs.

0.04%). In this case, the probability of connection be-
tween different nodes is 40%, p = 10, and the problem
requires 1020 CNOT gates on a fully connected device
(which corresponds to 3657 ECR gates after transpila-
tion to IBM’s Brisbane device). Although IonQ’s Aria
would also have enough qubits to run this case, testing
it was prevented by a limitation in the number of 1 and
2-qubit gates to 950 and 650, respectively. In this case,
there is a slight improvement in the Aspen-M-3 result
compared to the Random Sampler, but it is not signifi-
cant enough to conclude that partial information about
the probability distribution is recoverable.

Cross-platform TL

In this section, we study cross-platform TL by trans-
ferring the γ and β parameters of the 3 items BPP that
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(a) (b) (c)

FIG. 8. Success rate to find the optimal solution for different MIS problem sizes using real devices (a) MIS with 8 qubits
with 89.1% of ideal probability (b) MIS with 14 qubits and 19.8% ideal probability (c) MIS with 18 qubits and 24.1% ideal
probability. The blue bars represent the raw sampling results using the different devices while the red bars are the percentage
of bitstrings with optimal solution and Hamming distance 1 from the optimal solution. The dashed line represents a quadratic
improvement in the probability of success compared to random guessing.

have shown good TL capabilities to a different quantum
computing platform, namely a D-Wave Advantage quan-
tum annealer. Figure 9 shows the two modified anneal-
ing schedules for A(s) and B(s), respectively. Note that
we modify D-Wave Advantage A(s) and B(s) schedules
separately because the device does not allow the modifi-
cation of both of them at the same time. Fig. 9-(a) shows
the TL of the γ parameters of the BPP to the schedule
B(s) in D-Wave Advantage. Fig. 9-(b) shows the TL of
the β parameters of the BPP to the schedule A(s) in
D-Wave Advantage. A further restriction in the D-Wave
Advantage schedule is that the initial and final annealing
points must correspond to the A(s) and B(s) points.
Figure. 10 shows the TL to the MIS problem for prob-

lem sizes 100, 125, 150, 160, and 170 qubits. The results
are obtained using 5000 samples for each problem size.
Equation A18 is the QUBO formulation used to imple-
ment the problem and to evaluate the cost function. The
green dotted lines are the results using the D-Wave de-
fault annealing schedule, the red triangle line is the TL
of the mixer Hamiltonian parameters, and the blue circle
line is the TL of the cost Hamiltonian parameters. Figure
(10)-(a) shows the mean cost with error bars representing
the standard deviation of the 5000 sample costs. Figure
(10)-(b) shows the minimum cost of the 5000 samples
for each problem size. These results show a consistent
improvement in the distribution of solutions using TL
of β QAOA parameters to the A(s) parameters of the
mixer Hamiltonian schedule of D-Wave Advantage both
in terms of average and minimum value.

IV. CONCLUSIONS

We have presented transfer learning (TL) of QAOA
parameters in the context of COP, a methodology that
involves using pre-optimized QAOA parameters to solve
different COPs. This method therefore does not require

extra steps of classical optimization, but further param-
eters optimization using the TL parameters as a start-
ing point could be beneficial. We show that the BPP
has great generalization capabilities, i.e., the parameters
for small instances of BPP are good for larger instances
of the same problem and effective for instances of other
COPs. The successful TL between instances of BPP to
different COPs can be intuitively pictured as the con-
sequence of optimizing an effective, digitized annealing
schedule that works within the limit of a small number
of layers (p = 10). This is the opposite of what happens
with other COPs, where the parameters found do not
perform well on other problems.

We test TL using KP, BPP, MIS, MaxCut, TSP, and
PO. First, we do self-optimization for these problems,
exploring random instances with up to 20 qubits. Then,
we select the case with the best performance to find op-
timal solutions to the other problems. In our case, the
parameters used are those of the BPP for 3 items (12
qubits). We use those parameters in different instances
of the same and other problems for up to 42 qubits and
find that for all of them, the probability of finding the
ground state is above the quadratic speedup over random
guessing. This suggests that there are β and γ param-
eters that generalize well over different COPs in their
QUBO formulation.

Next, we show that coherent outputs for problem sizes
up to 14 qubits are still present in current quantum tech-
nology. We test 3 different instances of the MIS problem
with 8, 14, and 18 qubits with the devices used being
Rigetti’s Aspen-M-3, IBM’s Brisbane, IonQ’s Harmony,
and Aria. In the case of 8 qubits, a direct comparison
between the two generations of IonQ technology is possi-
ble, Harmony with a success probability of 3.0% and Aria
34.8%. This means an order of magnitude improvement
between these two generations of IonQ trapped ions for
sampling optimal solutions. There is still room for im-
provement and benchmarking with this methodology is a
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(a)

(b)

FIG. 9. Example for cross-platform TL parameters on the
D-Wave Advantage protocol. (a) TL to the cost Hamiltonian
schedule, and (b) TL to the mixer Hamiltonian schedule. The
dotted line represents the default schedule used by D-Wave,
the solid line is the new schedule with TL applied, and the
dashed line reflects the BPP-QAOA schedule. The blue (red)
color represents the mixer (cost) Hamiltonian protocol.

promising tool to see the evolution of quantum technol-
ogy for sampling.

Though self-optimization gives a better
probability(∗x) than TL for every COP, this im-
provement does not fully compensate for the resources
needed for the optimization loop needed to find the
parameters. TL is also convenient for the classical simu-
lation of large problems that typical computers cannot
handle (Nq > 30). Compared to the self-optimization
method it only requires one iteration compared to the
hundreds of self-optimization. In the case of Nq > 35,
only high-performance computing (HPC) systems
can handle the simulations, making self-optimization
computationally too expensive to even be considered.
Self-optimization issues are more notorious in real
quantum hardware where the cost of finding QAOA
parameters is in terms of the number of samples and
circuits used and classical solvers find it hard to work

FIG. 10. Cross-platform TL for the MIS using BPP pa-
rameters (a) average value using 5000 samples on D-Wave
Advantage (b) minimum cost of the 5000 samples.

with noisy quantum hardware [41]. This makes TL a
useful alternative that can compensate for the problems
associated with the classical optimization loop even if
TL parameters are not optimal.
Finally, we show that cross-platform TL is possible.

We use D-Wave Advantage to test MIS problems between
100 and 170 qubits using the QAOA parameters of the
BPP, Fig. 3. Two cases are tested, one with the modifi-
cation of the mixer Hamiltonian B(s) and one with the
modification of the cost Hamiltonian annealing protocol
A(s). We find a consistent improvement in terms of the
minimum and average cost using the mixer Hamiltonian
modified schedule.
A future direction could be to extended the analysis

of transfer learning in the context of Higher-Order Un-
constrained Binary Optimization (HUBO) formulations
of COPs, e.g., the one presented in [42].
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Appendix A: Supplementary Material

In this section, a description of the different problems used in this work is presented. For each problem, the
constraints are encoded using penalization terms. We use squared penalty terms for equality constraints, and the
unbalanced penalization approach [35] for inequality constraints.

1. QUBO Formulation

One approach to represent combinatorial optimization problems is through the Quadratic Unconstrained Binary
Optimization (QUBO) formulation. The QUBO formulation expresses the problem as a quadratic objective function
that depends on binary variables. The objective is to minimize this function by determining the values of the binary
variables, subject to certain constraints. Combinatorial problems that can be represented by the QUBO formulation
have functions of the form

f(x) =

n−1∑
i=0

n−1∑
j=0

qijxixj . (A1)

Here, n represents the number of variables, qij ∈ R are coefficients associated with the specific problem and xi ∈ {0, 1}
are the binary variables. It is important to note that in this formulation, xixi ≡ xi and qij = qji.
A general form of a combinatorial optimization problem that can be solved using Quantum Processing Units (QPUs)

is characterized by a cost function

f(x) = 2

n−1∑
i=0

∑
j>i

qijxixj +

n−1∑
i=0

qiixi, (A2)

and additionally, linear equality constraints are given by∑
i

cixi = C, ci ∈ Z, (A3)

and linear inequality constraints are given by ∑
i

wixi ≤W, wi ∈ Z, (A4)

can be added. Here, qij , ci, and wi are parameters of the problem. To transform problems with constraints into
the QUBO formulation, the constraints are usually incorporated as penalization terms. The equality constraints are
included in the cost function using a penalization term of the form

λ0

∑
i

cixi − C

2

. (A5)

Here, λ0 is a penalization coefficient that should be chosen appropriately to obtain sufficient solutions that satisfy the
equality constraint, and C is a constant value given by the constraint.

For the inequality constraints, we use the unbalanced penalization [35] encoding which is a heuristic method for
including inequality constraints as penalization terms in the QUBO formulation of combinatorial optimization prob-
lems. The method has been shown to outperform the slack variables encoding for the TSP, BPP, KP, and collateral
optimization [35, 36, 43]. Starting from Eq.(A4), the method adds a penalization term ξ(x) to the objective function
given by

ξ(x) = −λ1h(x) + λ2h(x)
2, (A6)

where h(x) =W−
∑

i wixi and λ1,2 are penalization coefficients that should be chosen to guarantee that the constraint
is fulfilled. The term ξ(x) is unbalanced, meaning that it imposes a larger penalization for negative values of h(x)
(i.e., when the constraint is not satisfied) than for positive values. The QUBO formulation using the unbalanced
penalization approach is given by
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min
x

2
∑
i,j>i

qijxixj +
∑
i

qiixi + λ0

∑
i

cixi − C

2

− λ1h(x) + λ2h(x)
2

 . (A7)

The parameters for the different problems studied in this work are shown in Table I. In general, this method does
not guarantee that the optimal solution is encoded in the ground state of the Ising Hamiltonian. For the probability
of the BPP, PO, and KP in Figs. 5 and 6, we choose as optimal solution the ground state of the new Ising Hamiltonian
that in the majority of the cases is the optimal solution of the original problem. The last step to represent the QUBO
problem as an Ising Hamiltonian is to change the xi variables to spin variables zi ∈ {1,−1} by the transformation
xi = (1 − zi)/2. Note that Eq.(A7) can ultimately be rewritten as Eq.(A2) plus a constant value. Hence, Eq.(A2)
represented in terms of the Ising model reads

Hc(z) =

n−1∑
i=0

n−1∑
j>i

Jijzizj +

n−1∑
i=0

hizi + offset, (A8)

where Jij and hi are real coefficients that represent the combinatorial optimization problem, and the offset is a
constant value. Since the offset does not affect the location of the optimal solution, it can be left out for the sake
of simplicity. In the following subsection, the COPs are presented. These problems can be translated into the Ising
Hamiltonian representation following the methodology presented in this section. The last step we use to solve the
problems using QAOA is to normalize the Hamiltonian by the maximum weight in the Hamiltonian, i.e., max{Jij , hi}.

TABLE I. Parameters λ0,1,2 for the TSP, BPP, KP, PO, and MIS used to translate the combinatorial optimization problems
into the QUBO representation using the unbalanced penalization approach (Eq. (A7)). For all equality constraints of each
problem, we use the same λ0, and for the inequality constraints the same λ1,2.

λ0 λ1 λ2

TSP 23 - -
BPP 15 4.2 0.4
KP - 0.96 0.04
PO - 0.97 0.06
MIS - 1 1

2. Combinatorial optimization problems

a. Traveling salesman problem

The TSP is a well-known combinatorial optimization problem that aims to determine the shortest possible route
to visit a given set of cities and return to the starting city. This problem has various practical applications, including
route planning, circuit board drilling, and DNA sequencing. A QUBO formulation of the TSP can be obtained using
a time encoding of the route that the traveler passes on a Hamiltonian cycle [1]. For the asymmetric and symmetric
forms, this TSP formulation requires n2 variables for n cities (we note that in principle, one can reduce this to
(n− 1)2 variables by fixing the starting point). It needs 2n equality constraints and avoids complications associated
with sub-tours. The TSP formulation is given by

min

n−1∑
t=0

n−1∑
i=0

n−1∑
j ̸=i,j=0

cijxi,txj,t+1, (A9)

subject to the set of constraints,

n−1∑
i=0

xi,t = 1 ∀t = 0, ..., n− 1, (A10)

and

n−1∑
t=0

xi,t = 1 ∀i = 0, ..., n− 1. (A11)
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Equation (A10) expresses that at every time t exactly one city is visited, while Eq.(A11) expresses that every city i is
visited at exactly one time. For this problem, we use instances with 3, 4, 5, and 6 cities, where the distances between
cities cij are randomly chosen from a normal distribution with a mean equal to 10 and a standard deviation equal to
0.1.

b. Knapsack Problem

The KP involves selecting a subset of items from a larger set, each with a certain weight wi and value vi, in such a
way that the total weight does not exceed a given limit while maximizing the total value. Formally, the cost function
is

max

n−1∑
i=0

vixi, (A12)

subject to the single inequality constraint,

n−1∑
i=0

wixi ≤W, (A13)

where xi = 1, 0 indicates that an item is included or not, and W is the maximum weight. We select item values vi
ranging from 5 to 63 randomly, weights wi from 1 to 20 randomly, and maximum weight W = 1

2

∑
i wi.

c. Portfolio Optimization

The goal of PO is to create a balanced portfolio out of a selection of financial assets, which should maximize future
returns while taking into account the total risk of the investment. The information we have about the assets is their
past returns µi and the covariances between assets σij , with which the problem can be formulated as follows

max

n−1∑
i=0

µixi − q

n−1∑
i=0

σijxixj , (A14)

subject to the inequality constraint

n−1∑
i=0

cixi ≤ B, (A15)

where (similar to the KP), the xi indicates whether an asset is selected as part of the portfolio or not, and B is the
total budget. The factor q controls how much risk is taken. If it is small, the second term in Eq.(A14) becomes
negligible and the returns µi will be dominant in determining the optimal solutions. In the main text, problem sizes
ranging from 4 to 42 are presented. The values of the expected return µi are randomly chosen between 0 and 1. The
correlation matrix σi,j is selected randomly from the set [−0.1, 0, 0.1, 0.2]. Asset costs ci are randomly chosen between
0.5 and 1.5. The budget is set as B = 1

2

∑
i ci.

d. Maximal Independent Set

The MIS problem asks to find the largest subset of vertices of a graph, such that no two vertices in the subset
are adjacent. This subset is then called independent. Formally, for an undirected graph G = (V,E), the problem
formulation is

max
∑
v∈V

xv, (A16)

subject to

xu + xv ≤ 1 ∀(u, v) ∈ E, (A17)
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where the binary variable xv determines whether a vertex is included in the subset or not. We select problem sizes
between 4 and 42 qubits and the probability of having an edge between nodes of 50%. The constraints in this case are
added to the QUBO formulation as 2xixj if an edge is present. Therefore, the QUBO formulation for this problem is
given by

min
∑
i∈V

−xi +
∑
i,j∈E

2xixj . (A18)

e. Bin Packing Problem

The BPP involves the efficient packing of a collection of items into the minimum number of bins, where each item
has an associated weight and the bins have a maximum weight capacity. This problem finds applications in various
real-world scenarios like container scheduling [44], and FPGA chip design [45] among others. The BPP is classified as
an NP-hard problem due to its computational complexity. The problem can be formulated as follows, minimize the
total number of bins used given by the objective function

min

m−1∑
j=0

yj , (A19)

subject to the following constraints. Each bin’s weight capacity should not be exceeded

n−1∑
i=0

wixij ≤Wyj ∀j = 0, ...,m− 1, (A20)

and each item can only be assigned to one bin

m−1∑
j=0

xij = 1 ∀i = 0, ..., n− 1. (A21)

Binary variables indicating item-bin assignments and bin utilization

xij ∈ 0, 1 ∀i = 0, .., n− 1 ∀j = 0, ..,m− 1, (A22)

yj ∈ 0, 1 ∀j = 0, ..,m− 1. (A23)

In the above equations, n represents the number of items (nodes), m represents the number of bins, wi is the weight
of the i-th item,W denotes the maximum weight capacity of each bin, and xij and yj are binary variables representing
the presence of item i in bin j and the use of bin j, respectively. The objective function in Eq.(A19) aims to minimize
the number of bins used, while Eq.(A20) enforces the constraint on bin weight capacity. Eq.(A21) ensures that each
item is assigned to only one bin, and Eqs. (A22) and (A23) define the binary nature of variables xij and yj . The
main text considers scenarios involving 3, 4, 5, and 6 items. The weight of each item wi is randomly chosen from 1
to 10, and 20 is the maximum weight W of the bins. The Lagrange multipliers λ0,1,2 in Eq.(A7) for this problem are
15, 4.2, and 0.4, respectively.

f. Maximum Cut

The MaxCut problem involves determining the partition of the vertices in an undirected graph such that the total
weight of the edges between the two sets is maximized. For an undirected graph G = (V,E), the problem is formulated
as

max
∑

(i,j)∈E

wij(xi + xj − 2xixj), (A24)

where wij represents the weight of the edge between vertices i and j, and xi and xj are binary variables that
determine the partition of vertices. The goal is to maximize the sum of edge weights over all edges in the cut. The
binary variables xi and xj take values of 0 or 1, indicating the membership of vertices in different sets of the partition.
If xi and xj are different, the edge contributes to the objective function.
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