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ABSTRACT
I consider the contact mechanics for a layered material, consisting of an elastically soft film glued to a hard substrate. I calculate the area of real
contact for surfaces with fractal-like roughness and for surfaces with roughness in narrow length scale regions. For the fractal-like surfaces,
when the product q0d of the film thickness d and the low cut-off wavenumber q0 of the surface roughness power spectrum satisfy q0d < 0.1,
the effective modulus becomes very large. This results in large contact stresses, which can induce plastic deformation or wear, in particular
during sliding contact. I also calculate the probability distributions of the normal and tangential stresses at the film–substrate interface. If the
tangential (shear) stress is too high, the adhesive bond between the film and the substrate will break. I compare the thin-film contact mechanics
problem with the Gent solution for a thin elastic sheet confined between two flat solid surfaces, and discuss the origin of the difference in
effective elastic modulus.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0274655

I. INTRODUCTION

Thin coatings or films are used for many purposes such as
paints for protection and aesthetic reason, or thin Teflon films on
rubber for lowering the friction, or to reduce the migration of toxic
(leachable) components from the rubber stopper to the fluid (drug)
in syringes. In many applications, soft coatings such as rubber are
used on steel surfaces as protection or to prevent (or reduce) marine
growth and corrosion.

While thin coatings or films can have many beneficial effects,
there are also several problems. For example, thin (∼10 μm) Teflon
coatings on rubber stoppers require extremely smooth surfaces to
avoid leakage and to ensure microbial integrity. This is a conse-
quence of the elastic modulus of the Teflon being ∼1000 higher
than for rubber, and therefore, even if the film is very thin, it can-
not always deform enough at the interface for the contact area to
percolate.1,2

A large number of papers have been published about various
aspects of contact mechanics for layered materials.3–8 In this report,
we are interested in rubber coatings on hard countersurfaces, such
as steel, which has a large number of practical applications. In most
applications, the rubber films are strongly bound to the substrate,

e.g., strong chemical bonds to brass or copper form if the rubber
is vulcanized in contact with these metals (rubber molecules form
covalent C–S–Cu bonds with the substrate). In some cases such as
for silicone elastomer, strong covalent bonding to metals requires
the use of a primer. In other cases, adhesives such as cyanoacry-
late are used to form strong bonding between rubber and metals.
In all these cases, describing the interfacial contact with a sliding
friction coefficient is not appropriate, but the information about the
shear stress acting between the rubber and countersurface in asper-
ity contact regions is important for deciding if the adhesive bond will
fail.

Since all surfaces have surface roughness, it is important to
understand how roughness at different length scales affects the
contact mechanics. We will show that with respect to short wave-
length roughness, with a wavelength smaller than the thickness of
the rubber film, the rubber deforms as a soft material; however,
for the long-wavelength components, the effective modulus may be
∼103 or more higher than the rubber bulk Young’s modulus. As
a result, during sliding contact, very high shear stresses may act
on the rubber surface, which could result in damage to the rubber
film, or break the adhesive bond between the rubber film and the
contersurface.
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FIG. 1. A “steel” surface with a thin “rubber” film of thickness d.

II. THEORY
We consider a thin rubber film glued to a steel surface, see

Fig. 1. The rubber film has uniform thickness but with roughness
reflecting the roughness of the steel substrate. We present numer-
ical results below assuming surfaces with two types of random
roughness, but all with the root-mean-square slope ξ = 1.

When a rigid flat surface is squeezed against a homogeneous
elastic solid (Young’s modulus E and Poisson ratio ν), for small
enough applied nominal contact pressure p0, the area of real contact
is given by9–18

A
A0
≈

κp0

ξE∗
, (1)

where A0 is the nominal contact area, E∗ = E/(1 − ν2
), and κ is a

number of order 2.
We consider two types of roughness, namely, self-affine frac-

tal surfaces (without roll-off), and surfaces with roughness only in
a narrow range of length scales. The self-affine fractal surfaces have
the surface roughness power spectra

C(q) = C0(
q
q0
)

−2(1+H)
, (2)

for q0 < q < q1. We choose q1 = 108 m−1 but vary the small
wavenumber cut-off q0 and choose C0 so the rms slope ξ = 1 for all
the surfaces.

The latter type of surfaces have roughness only in a small length
scale region. We refer to this roughness as “waviness.” A surface with
roughness on a single-length scale can be obtained as the sum of
roughness components,

h(x) = a cos (q0 ⋅ x + ϕq),

where q0 is the random direction of the wave vector and ϕq is the
random phase, with a and ∣q0∣ = q0 being constant. Such surfaces
will have surface roughness power spectra, which only depend on
the magnitude q of the wave vector q. It is intuitively plausible that
such surfaces will have the power spectrum (see Appendix A for the
proof),

C(q) = αδ(q − q0).

If h2
0 is the mean square (ms) roughness, then

h2
0 = ∫ d2q C(q) = 2π∫

∞

0
dq qαδ(q − q0) = 2παq0,

so that α = h2
0/2πq0 and

C(q) =
h2

0

2πq0
δ(q − q0). (3)

Note that the ms slope is

ξ2
= ∫ d2q q2C(q) = (h0q0)

2. (4)

In the numerical simulations presented below, we broaden
the δ(q − q0), which also makes the power spectrum more realis-
tic as one seldom will have long wavelength roughness (waviness)
involving just one length scale defined by q0. We use the Gaussian
approximation of the Dirac delta function,

δ(q − q0)→
1

Q
√
(2π)

e−(q−q0)2/2Q2

,

where Q is the Gaussian root-mean-square (rms) width. The Dirac
delta function is obtained from the limit Q→ 0. Thus, as the second
type of power spectrum, we use

C(q) =
h2

0

q
1

Q(2π)3/2 e−(q−q0)2/2Q2

. (5)

We will show the results for several values of q0, and we always
assume Q = 0.1q0. Figure 2 shows a topography picture of a sur-
face with the power spectrum [Eq. (5)], generated as described in
Ref. 19 (Appendix A) by adding plane waves with random phases
as in Eq. (A1). The surface has roughness in a very narrow length
scale region, with a Gaussian height probability distribution. Inci-
dentally, we note that it is only for surfaces of the type shown
in Fig. 2, with roughness on a narrow length scale region, that
the Greenwood–Williamson contact mechanics theory is (approx-
imately) valid, assuming so low contact pressures that the elastic
interaction between the asperities can be neglected.

In the numerical study, we use the Persson contact mechan-
ics theory9 and include layering as described in Ref. 4. Specifically,
the response function Mzz , which enters in the Persson contact
mechanics theory takes, for layered materials, the following form:

Mzz(q) = −
2

qE∗0
S(q), (6)

FIG. 2. A topography picture of a surface with the power spectrum (5). The sur-
face has roughness in a very narrow length scale region. The height probability
distribution is Gaussian.
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where E∗0 = E0/(1 − ν2
0) is the effective modulus of the top layer. For

the case of one layer (thickness d) on top of a semi-infinite bulk with
the modulus E1 and the Poisson ratio ν1, one has

S(q) =
1 + 4mqde−2qd

−mne−4qd

1 − [m + n + 4m(qd)2
]e−2qd

+mne−4qd , (7)

where

m =
G0/G1 − 1

G0/G1 + 3 − 4ν0
,

n = 1 −
4(1 − ν0)

1 + (G0/G1)(3 − 4ν1)
,

where G = E/2(1 + ν) = E/3 for ν = 0.5 is the shear modulus.

III. NUMERICAL RESULTS
To illustrate how roughness on different length scales influ-

ences contact mechanics, we consider first the Gaussian power
spectra centered at different wavenumbers q0. In all cases, we choose
the rms roughness h0 so that the rms surface slope ξ = 1. For a homo-
geneous solid, the contact area should be the same, independent of
q0, and given by (1) if p0/E

∗
≪ 1. In this study, we use p0 = 0.1 MPa

so this condition is satisfied for the rubber (and, of course, for the
steel).

In the numerical calculation, we denote the substrate as “steel”
with Young’s modulus and Poisson ratio ES = 1011 Pa and νS = 0.5,
respectively. The film on top is denoted as “rubber” with the elastic
parameters ER = 106 Pa and νR = 0.5. The rubber film is d = 50 μm
thick.

The blue lines in Fig. 3 show two Gaussian power spectra cen-
tered at q0 = 103 and 105 m−1. Both power spectra correspond to
surfaces similar to those in Fig. 2 with the rms slope ξ = 1.

The blue line in Fig. 4 shows the normalized contact area A/A0
as a function of the center wavenumber q0 of the Gaussian power

FIG. 3. Two power spectra for the fractal surface (red lines), and for the surface
with a Gaussian power spectra (blue lines). The Hurst exponent of the fractal sur-
face H = 1 and the rms width of the Gaussian is q0/10. In the case of the fractal
surfaces, the two low wavenumber cut-offs are q0 = 103 and q0 = 105 m−1. The
two Gaussian power spectra are centered at the same two values for q0.

FIG. 4. The normalized contact area A/A0 as a function of the cut-off wavenumber
q0 (for the fractal surfaces) or center wavenumber q0 (for the Gaussian power
spectra). All surfaces have the rms slope ξ = 1.

spectra. Note that the contact area of the homogeneous rubber and
steel materials becomes q0d →∞ and 0, respectively. While the rub-
ber limit is obtained for q0d ≳ 5, the steel limit is obtained only when
q0d ≲ 0.005.

We have also performed calculations for a more realistic fractal-
like surface with the Hurst exponent H = 1 and the large wavenum-
ber cut-off q1 = 108 m−1. We have varied the low wavenumber
cut-off q0 and chosen the rms roughness h0 so that the rms slope
ξ = 1 for all surfaces. The two red lines in Fig. 3 show the power
spectra for q0 = 103 and 105 m−1.

The red line in Fig. 4 shows the normalized contact area A/A0
as a function of the center wavenumber q0 of the fractal-like power
spectra. Note that the contact area approach that of the homoge-
neous rubber and steel materials as q0d →∞ and 0, respectively.
While the rubber limit is obtained for q0d ≳ 2, the steel limit is
obtained only for extremely small q0d.

Real rubber materials are not incompressible and, thus, have
Poisson ratios slightly smaller than 0.5. The bulk modulus of rubber
is similar to that of other polymers and is typically KR ≈ 2 × 109 Pa.
(Most materials have a similar bulk modulus as Young’s modulus;
however, this is not the case for rubber because its Young’s mod-
ulus is of entropic origin, whereas its bulk modulus is determined
by compression of molecular chains interacting with the van der
Waals interaction and the short ranged Pauli repulsion.) Assuming
the rubber’s bulk modulus KR ≈ 2 × 109 Pa and Young’s modulus
ER = 2 × 106 Pa as in the calculations above, and using E = 3K
(1 − 2ν), we get νR ≈ 0.499 85. In Fig. 5, we compare the result for
A/A0 as a function of q0 calculated with ν ≈ 0.499 85 (green curve)
with the results for νR = 0.5 (red curve, from Fig. 4). Clearly, the
difference between the two curves is negligible for all values of q0.

The theory presented in Ref. 4 and in Appendix B also predicts
the normal and the shear stress at the interface between the rubber
film and the steel surface. I note that Johnson20 and Barber21 have
also studied the stress at interfaces of layered materials, but only for
smooth surfaces with different macroscopic curvatures. However, all
real surfaces have random roughness on many length scales, which
is a topic much more complex than for smooth curved surfaces. In
addition, Johnson and Barber assumed that the contact between the
film and the substrate can be described using friction coefficients,
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FIG. 5. The normalized contact area A/A0 as a function of the cut-off wavenumber
q0 for the fractal-like surfaces for the rubber Poisson ratio νR = 0.5 (red line) and
νR = 0.499 85 (green line). All surfaces have the rms slope ξ = 1.

which is not the case if the film is glued, or bonded by covalent
bonds, to the substrate.

If the normal stress is too high, it could plastically deform the
steel (or other softer substrate material); if the shear stress is too
high, it can break the adhesive bond between the rubber and the
steel surface. For rubber glued to the steel surface using, e.g., epoxy
resin, tearing experiments show that the adhesive bond breaks at a
typical shear stress of ∼10 MPa. Because of the random nature of
surface roughness, the stress at the rubber–steel interface will not
be uniform and can only be characterized by probability distribu-
tions. Using the theory of Ref. 4, one can obtain the distributions
of normal stress P(σ) and shear stress P(τ). Using the equations
summarized in Appendix B, we show in Fig. 6 the probability distri-
bution of normal stress P(σ) at the upper surface (red curve) and
at the steel–rubber interface (blue curve). The green curve shows
the distribution P(τ) of shear stress. All probability distributions are
normalized so that

∫

∞

0
dσ P(σ) = 1, ∫

∞

−∞
dτ P(τ) = 1.

FIG. 6. The relative probabilities to find normal stress σ at the top surface (z = 0)
(red line) and at the interface z = d (blue line), and the shear stress τ at the inter-
face (green line), for the fractal-like surface with q0 = 105 m−1 and film thickness
d = 10 μm.

FIG. 7. The rms width of the stress probability distributions as a function of the film
thickness (log–log scale), for the fractal-like surface with q0 = 105 m−1.

In the calculations, we assumed a d = 10 μm thick rubber film and
used the self-affine fractal surface with the low wavenumber cut-off
q0 = 105 m−1.

In Fig. 7, the blue and green lines show for the same rough
surface, the root-mean-square width of the probability distribution
of normal stress and shear stress at the rubber–steel interface, as a
function of the rubber film thickness (log–log scale). The red line
shows the root-mean-square width of the probability distribution
at the top surface of the rubber film. Note that, for a large rubber
film thickness, the normal stress and the shear stress exhibit the
same stress fluctuations and that, for d≫ 1/q0, the stress fluctua-
tions at the interface become very small so that τ ≈ 0 and σ ≈ σ0.
The physical reason for this is illustrated schematically in Fig. 8 for
the contact between a rubber film and a randomly rough surface
with short-wavelength roughness q0d≫ 1 [Fig. 8(a)] and long-
wavelength roughness q0d≪ 1 [Fig. 8(b)]. For large film thickness
q0d ≳ 2, the width of the stress distribution at the top of the film
(z = 0) is constant, which indicates that the film with respect to
the stress at this surface can already be considered as infinite thick
when q0d ≳ 2. For small film thickness, the normal stress at the inter-
face is nearly the same as at the top surface (red and blue lines for

FIG. 8. The contact between a rubber film and a randomly rough surface with
(a) short-wavelength roughness, q0d ≫ 1 and (b) long-wavelength roughness
q0d ≪ 1 (schematic).
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FIG. 9. The normalized contact area A/A0 as a function of the squeezing pressure
p0 for the cut-off wavenumbers q0 (for the fractal surfaces) q0 = 104 m−1 (red
curve) and 3 × 103 m−1 (green curve).

q0d ≲ 1/2), while the shear stress increases more slowly than the
normal stress with decreasing film thickness.

Rubber coating on steel has a typical thickness of 50–500 μm.
Most surfaces in engineering applications have the cut-off (or rather
roll-off) wavenumber q0 ≈ 105 m−1 so that q0d is typically in the
range of 5–50. For this large q0d, the shear stress at the steel–rubber
interface is already strongly reduced from what is expected for
q0d < 1 and the shear stress in most cases will be well below the yield
limit where the stress can break the adhesive bond between the rub-
ber film and the steel surface. This conclusion holds for stationary
contact, but during sliding, larger shear stresses may prevail but this
topic will not be addressed here.

IV. DISCUSSION AND CONCLUSION
When the roughness wavelength is much larger than the thick-

ness of the rubber film, the film behaves as an elastically very
stiff material. Nevertheless, the contact area depends linearly on
the applied pressure p0 for low enough pressures (see Fig. 9), and
one can define an effective modulus Eeff that depends on the low
wavenumber cut-off q0 and the film thickness d. As q0d → 0, we
must have Eeff → ES, and as q0d →∞, we must have Eeff → ER. In

FIG. 10. The effective modulus Eeff normalized by the modulus of the rubber and
ER as a function of q0d (log–log scale), for the fractal surfaces with the power
spectrum (2).

FIG. 11. A cylindrical block with radius R and height d0 is squeezed between two
rigid plates. At the lower plate, no slip occurs, while the upper interface is lubricated
and slip occurs so that the shear stress vanishes. For an incompressible material,
the relation between the displacement u and the squeezing force F can, for
u≪ d0, be approximately obtained by considering the solid as a very high vis-
cosity fluid (viscosity η) with the shear modulus G(ω) = −iηω (see Appendix C).

Fig. 10, we show Eeff/ER as a function of q0d for the fractal-like
surface with the power spectra (2).

A similar contact mechanics effect as described above, and of
the same origin, is observed in the compression of a rubber block
against a rigid surface assuming no slip at the bottom interface (see
Fig. 11). This topic was studied by Gent.22–25 He used a method
now denoted the “pressure method” [in Appendix C, we present a
slightly different (and simpler) derivation of the Gent result]. Gent
showed that there is a compressive pressure in the film p = 2p0
[1 − (r/R)2

], where p0 = F/πR2 is the average squeezing pressure,
and that the compressive strain ϵ = u/d is related to the applied
(average) pressure p0 as

p0 = Eeffϵ

with

Eeff ≈
1
8
(

R
d
)

2
ER. (8)

For d≫ R, we have Eeff ≈ ER, and we can interpolate between this
limit and (8) using

Eeff

ER
≈ 1 +

1
8
(

R
d
)

2
. (9)

We can compare this prediction with the results presented
above for the Gaussian roughness case. In Fig. 12, we show the

FIG. 12. The effective Young’s modulus for the roughness with Gaussian power
spectrum and the confined cylinder disc in Fig. 11 [Eq. (9)] as a function of q0d
and d/R, respectively (log–log scale). For the Gaussian power spectrum case, we
have varied d but kept q0 = 105 m−1 fixed.
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FIG. 13. The deformation at contact between an asperity and a flat surface for the
case of the Gaussian power spectrum. The dashed lines indicate how the rubber at
the edge of the contact bends outwards, but this bending is resisted by the rubber
film outside of the contact region. This differs from the cylinder disc case in Fig. 11,
where there is nothing “outside” resisting the bending.

effective Young’s modulus for the roughness with Gaussian power
spectrum and for the confined cylinder disc in Fig. 11, as a func-
tion of q0d and d/R, respectively (log–log scale). Note that, for the
Gaussian case, for q0d > 0, before saturating for small q0d at ES/ER,
the effective modulus increases faster with decreasing film thickness
than for the confined rubber cylinder disc in Fig. 11. This can be
understood as follows.

For the rough surface, the roughness profile consists of spheri-
cal cup-like bumps (see Fig. 2). When a bump is squeezed against a
flat rigid surface, the rubber at the edge of the contact bends outward
(dashed lines in Fig. 13); however, this bending is resisted by the rub-
ber film outside of the contact region (see Fig. 13). This differs from
the cylinder disc case in Fig. 11, where the nothing “outside” resists
the bending. This additional confinement results in a faster increase
in the Eeff/ER with decreasing thickness d for the film, as compared
to the disc.

In the calculations, we have used a relatively small nominal
contact pressure p0 = 105 Pa. The average pressure in the area of
real contact equals p = p0A0/A. Figure 4 shows that for surfaces
with long wavelength roughness λ0 ≫ d or q0d≪ 1, this pressure
can be extremely large approaching that expected for a material
with the elastic modulus of steel where A/A0 ≈ 2p0/ξE∗S so that
p ≈ ξE∗S /2. In practice, this high pressure cannot be reached since
steel yields plastically at much lower contact pressures (typically a
few GPa). Furthermore, during slip, very high frictional stress will
act on the rubber film, which may break the rubber–steel adhe-
sive bond. We note that the “dangerous” roughness components are
those with wavelengths longer than the rubber film thickness so the
long-wavelength “waviness” should be small in order to avoid large
contact stresses.
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APPENDIX A: SURFACE ROUGHNESS POWER
SPECTRA FOR A SURFACE WITH ROUGHNESS
IN A NARROW LENGTH SCALE REGION

The result (3) can be proved as follows. We write the height
field as

h(x) =∑
q′

a cos (q′ ⋅ x + ϕq′), (A1)

where a is a constant, the sum is over the different direction of the
wavevector but with the same magnitude ∣q′∣ = q0, and the phases
ϕq′ are random numbers uniformly distributed between 0 and 2π.
Using the definition,

C(q) =
1
(2π)2 ∫ d2q⟨h(x)h(0)⟩eiq⋅x,

and that

⟨cos (q′ ⋅ x + ϕq′) cos (ϕq′′)⟩ =
1
2
⟨cos (q′ ⋅ x + ϕq′ + ϕq′′)

+ cos (q′ ⋅ x + ϕq′ − ϕq′′)⟩

=
1
2

δq′q′′ cos (q′ ⋅ x),

we get

C(q) =
1
(2π)2

a2

2 ∑q′
∫ d2x cos (q′ ⋅ x) eiq⋅x

=
a2

8π∑q′
[δ(q + q′) + δ(q − q′)].

Both terms in this expression are identical so that

C(q) =
a2

4π∑q′
δ(q + q′). (A2)

In the continuum limit, the sum over the direction of the wavevector
q′ = q0(cos θ, sin θ) can be written as

∫

2π

0
dθ = ∫ d2q′

1
q′

δ(q′ − q0).

Using this result in (A2) gives

C(q) =
a2

4π ∫
d2q′

1
q′

δ(q′ − q0)δ(q + q′) =
a2

4πq
δ(q − q0).

We can choose a so that the mean square amplitude becomes h2
0,

which gives (3).
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APPENDIX B: BASIC EQUATIONS FOR THE RMS
WIDTH OF STRESS FLUCTUATIONS

Here, we derive the probability distributions of the shear stress
and the normal stress at the steel-rubber interface. The results are
based on the equations derived in Ref. 4. Although we are interested
in static contact in the present approach (see Ref. 4), it is necessary
to assume a small finite frequency ω, which is chosen so small that
the final result does not depend on ω.

Let n denote the normal to the surface at the interface, and
let z be a coordinate axis along n with a positive direction into the
solid. The Fourier transform of the stress σijnj at the interface can be
written as

σnn + q̂σq,

where q̂ = q/q is a unit vector along the wavevector q. Using (3), (5),
(26), and (27) in Ref. 4, we get

−i
μ0

σn = Rq2A0(e−ipLd
+ rAeipLd

)

+ 2q2
(−iqp̄T)C0(e−ipTd

− rCeipTd
), (B1)

−i
μ0

qσq = 2q2
(−iqp̄L)A0(e−ipLd

− rAeipLd
)

− q4RC0(e−ipTd
+ rCeipTd

), (B2)

where

R = (
ω

qcT
)

2

− 2,

and pL = −iqp̄L, pT = −iqp̄T, with

p̄L =

⎡
⎢
⎢
⎢
⎢
⎣

1 − (
ω

qcL
)

2⎤
⎥
⎥
⎥
⎥
⎦

1/2

, p̄T =

⎡
⎢
⎢
⎢
⎢
⎣

1 − (
ω

qcT
)

2⎤
⎥
⎥
⎥
⎥
⎦

1/2

.

The condition (31) in Ref. 4 gives

A0

C0
= −

Rq
2ip̄L

1 + rC

1 − rA
. (B3)

Using (B1) and (B3) gives

1
μ0q3C0

σn = −
R2

2p̄L

1 + rC

1 − rA
(e−ipLd

+ rAeipLd
)

+ 2p̄T(e−ipTd
− rCeipTd

). (B4)

If σn0 denotes the stress at the upper surface z = 0, we get from (B4)
with d = 0

1
μ0q3C0

σn0 = −
R2

2p̄L

1 + rC

1 − rA
(1 + rA) + 2p̄T(1 − rC). (B5)

Using (B2) and (B3) gives

FIG. 14. The ratio f(qd) = σn(q, d)/σn(q, 0) between the Fourier transform of
the normal stress at the interface z = d and at the surface z = 0 as a function of
the wavenumber, and the ratio g(qd) = −iσq(q, d)/σn(q, 0) between the Fourier
transform of the shear stress σq (which is along the direction of the wavevector q)
at the interface z = d and the normal stress at the surface z = 0 as a function of
the wavenumber, for the self-affine fractal surface with q0 = 105 m−1 and the film
thickness d = 10 μm.

−i
μ0q3C0

σq = R
1 + rC

1 − rA
(e−ipLd

− rAeipLd
)

− R(e−ipTd
+ rCeipTd

). (B6)

We define

f (qd) =
σn

σn 0
, g(qd) =

−iσq

σn 0
, (B7)

which are obtained using (B4)–(B6) and are function of qd. Figure 14
shows f(qd) and q(qd) for a 10 μm thick rubber film on steel.
The surface roughness has the long wavelength cut-off wavenumber
q0 = 105 m−1. Note that f(qd) and g(qd) are non-zero only for small
wavenumbers because only the long wavelength (or small wavenum-
ber) part of the pressure at z = 0 can give rise to stress fluctuations at
the rubber-steel interface (z = d) as illustrated in Fig. 8.

The normal stress probability distribution P(u) at the surface
z = 0 is centered at the applied nominal contact pressure σ0 and is
given by the Persson contact mechanics theory. The normal stress
at the rubber–steel interface has a similar form but with a smaller
width. The shear stress probability distribution P(τ) is assumed to
be Gaussian and centered at τ = 0, since the average shear stress must
vanish by symmetry, see Fig. 6. To calculate the rms width of the
distributions, we use the equation (see Ref. 26)

⟨(σ − σ0)
2
⟩ =
(2π)2

A0
∫ d2q ∣σ(q)∣2,

where the stress σ(q) could be either σn or (with σ0 = 0) σq. Using
(B7), we get

⟨(σ − σ0)
2
⟩ =
(2π)2

A0
∫ d2q ∣ f (qd)∣2∣σn0(q)∣2, (B8)

⟨τ2
⟩ =
(2π)2

A0
∫ d2q ∣g(qd)∣2∣σn0(q)∣2. (B9)
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For a layered material,

∣σn0(q)∣2 = (
E∗0
4π
)

2

A0q2C(q)S−2
(q)P(q), (B10)

where S(q) is given by (7) and

P(q) = erf(
σ0

2G1/2 ), (B11)

with

G(q) =
π
4
(E∗0 )

2
∫

q1

q0

dq q3C(q)S−2
(q). (B12)

Using (B8)–(B12), we can calculate the rms stress fluctuations at the
interface between the rubber and the steel surface. The results for a
self-affine fractal surface with the cut-off q0 = 105 m−1 are shown in
Fig. 7.

APPENDIX C: A NEW DERIVATION OF THE GENT
EXPRESSION FOR THE COMPRESSED CONFINED
RUBBER BLOCK

Gent derived (8) for incompressible solids using a method
now denoted the “pressure method.” In this method, the total
displacement of a bounded rubber layer subject to uniform com-
pression is composed of the superposition of two simple displace-
ments: pure homogeneous compression between two flat walls
with slip boundary conditions (no friction) and additional shear
displacements to keep the bonded surfaces in their original posi-
tions. Here, we will treat the rubber film as a high-viscosity fluid
(as would be the case if the rubber were uncrosslinked) and derive
the same result using the standard fluid squeeze-out theory for flu-
ids between a circular disc (radius R) and a flat substrate. This
approach is based on the fact that, on short enough time scales,
liquids can behave as solids (as for silica glass which behaves as a
solid during fast deformation but flows as a fluid on very long time
scales).

In this section, we denote the thickness of the solid (or fluid)
film by h. We consider the case where the fluid sticks on the sub-
strate surface (no-slip boundary condition) while the shear stress
vanishes (slip without friction) on the disc surface. If h(t) and p(t)
are the surface separation and average squeezing pressure at time t,
respectively, then the Reynolds thin-film fluid flow equation gives
the pressure distribution in the film

p(r, t) = 2p(t)[1 − (
r
R
)

2
] (C1)

and

dh
dt
= −

8h3p
3ηR2 . (C2)

For the case of a solid of undeformed width h0, we write h(t)
= h0[1 − ϵ(t)] and assume that the strain ϵ(t)≪ 1 so we can
linearize (C2) to get

dϵ
dt
=

8h2
0

3ηR2 p(t).

If p(t) = p(ω)e−iωt and ϵ(t) = ϵ(ω)e−iωt , then

−iωϵ(ω) =
8h2

0p(ω)
3ηR2 .

Using the shear modulus G(ω) = −iωη, we can write

G(ω)ϵ(ω) =
8h2

0p(ω)
3R2 ,

or

Gϵ =
8h2

0p
3R2 .

For an incompressible solid, G = E/3 giving

Eeffϵ = p,

where

Eeff =
1
8
(

R
h0
)

2
E. (C3)

In the limit h≫ R (assuming no buckling), one must have Eeff = ER
so that

Eeff ≈ ER[1 +
1
8
(

R
h
)

2
]

is an interpolation formula approximately valid for all ratios h/R.
The same procedure as above gives for the case of stick bound-

ary condition on both surfaces the same pressure profile (C1) but
(C3) is replaced by

Eeff =
1
2
(

R
h0
)

2
E. (C4)
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