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ABSTRACT
A classical coulombic correlation functional in one-loop (1L) and local-density-approximation (LDA) is derived for electrolyte solutions,
starting from a first-principles many-body partition function. The 1L–LDA functional captures correlations between electrolyte ions and
solvent dipoles, such as screening and solvation, which are ignored by conventional mean-field theories. This 1L–LDA functional introduces
two parameters that can be tuned to the experimental dielectric permittivity and activity coefficients in the bulk electrolyte solution. The
capabilities of the 1L–LDA functional for the description of metal–electrolyte interfaces are demonstrated by embedding the functional into
a combined quantum–classical model. Here, the 1L–LDA functional leads to a more pronounced double-peak structure of the interfacial
capacitance with higher peaks and shorter peak-to-peak distance, significantly improving the agreement with experimental data and showing
that electrolyte correlation effects exert a vital impact on the capacitive response.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0250135

I. INTRODUCTION

The interfacial region between a charged metal surface and an
electrolyte solution continues to be a vital topic in various scien-
tific fields, encompassing electrochemistry and biology.1,2 However,
the structure of the electric double layer (EDL) remains challeng-
ing to probe experimentally.3 Therefore, theoretical approaches are
required to complement experimental insights.

Ab initio molecular dynamics (AIMD) simulations based on
quantum-mechanical density functional theory (DFT) can be used
to simulate metal and electrolytes at an atomistic level.4 How-
ever, such AIMD approaches are still computationally infeasible for
complex realistic systems.5 To address the challenge of computa-
tional cost, various hybridization schemes have been developed that
describe electrode and electrolyte regions at different levels of the-
ory.6 The metal description varies from Kohn–Sham DFT, as used
in ESM–RISM7–11 or joint density-functional theory (JDFT),12–14

to orbital free DFT (OFDFT), as employed in density-potential
functional theory (DPFT)15,16 and classical electrode models with
fluctuating atomic charges.17 On the other hand, the electrolyte
description varies from classical molecular dynamics (MD) simu-
lations for sampling the spatial movement of electrolyte species18,19

to continuum electrolyte models. Significant efforts are devoted to
improving the continuum description of electrolyte solutions that
are able to capture the essential physics of the EDL.

Continuum approaches, where the picture of individual parti-
cles is smeared out to continuous (averaged) density distributions,
were the basis for the earliest EDL models. In the Helmholtz
model,20 the EDL is described by a simple capacitor, while in
the Gouy–Chapman–Stern (GCS)21 approach, the EDL is further
refined by an additional diffuse layer, with the mean-field (MF)
Poisson–Boltzmann (PB) equation employed to calculate poten-
tial and density distributions. However, the GCS model does not
quantitatively agree with experimental capacitance data for larger
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electrode potentials.22 These shortcomings of the GCS model are
addressed in augmented PB approaches, such as the Modified PB
(MPB) model that considers sterical, or finite-size, effects23,24 to
improve the agreement with experimental capacitance data.25

In electrostatic MF models, such as GCS theory, particles inter-
act solely through an average electrostatic potential generated by
the average charge distribution of all particles, which means that
electrostatic correlation effects are not accounted for. Coulombic
correlations, however, determine various properties of electrolytes.
Ion–solvent correlations induce the typical dielectric decrement,26

while ion–ion correlations reduce the ionic activity coefficient due
to screening, as described in Debye–Hückel theory.27 A variety of
models have been proposed to include coulombic correlation effects
into GCS theory ad hoc, which was shown to provide quantitative
agreement with experiments.22,28

Classical DFT (cDFT) provides a versatile theoretical frame-
work for the treatment of electrolyte solutions. In cDFT, one seeks
an expression for a free energy functional, which is minimized by
the equilibrium density profiles.29 The simplest functional capturing
coulombic interaction is the MF functional, which neglects coulom-
bic correlation effects and reduces to the classical PB equation when
minimized.30 Interactions beyond MF are described by a correla-
tion functional. However, as in quantum-mechanical DFT, the exact
density functional for electrolytes is unknown.31 In practice, the for-
mally exact Ornstein–Zernike (OZ) integral equation, which relates
the direct correlation function to the (experimentally measurable)
pair correlation function, is employed for constructing approximate
cDFT correlation functionals.29 The OZ equation needs a closure
relation, such as the mean spherical approximation (MSA), from
which functionals have been derived.32–34 These functionals cap-
ture important electrolyte phemonena such as screening,34,35 but the
approximations made by closure relations are ambiguous and dif-
ficult to improve.30 Another limitation is the implicit treatment of
the solvent, meaning that while ion–ion correlations are considered
through the OZ equation, solvent–solvent and ion–solvent corre-
lations are typically not included. In molecular density functional
theory (MDFT),36,37 the solvent has been explicitly incorporated
in the OZ equation, but this approach requires additional molec-
ular dynamics (MD) simulations for the computation of the pair
correlation function.

Alternatively, electrolyte solutions have been treated by a field
theoretic approach that does not rely on the OZ integral equa-
tion.38 The statistical partition function of an electrolyte is mapped
by a Hubbard–Stratonovich (HS) transformation39,40 to an exact
functional integral of the electrostatic potential weighted by an
action functional. This form is very attractive as it resembles func-
tional integrals familiar from quantum field theory (QFT) that
have been extensively studied in the past century.41,42 The toolbox
of QFT allows systematic perturbative studies of thermodynamic
quantities.43 Pioneering works by Netz and Orland reproduced
Debye–Hückel (DH) results for bulk systems using this field the-
oretic approach.44 Subsequent extensions of the field theoretic
framework, derived with the one-loop (1L) approximation for the
electrostatic potential,38 elucidated various phenomena, such as
dielectric decrement in bulk electrolytes,26 coulombic correlations
at dielectric interfaces,45–47 and non-local solvent structure.48,49

Combining the toolbox of the field theoretic approach with the

cDFT framework appears highly promising but, to the best of our
knowledge, has not been presented yet.

This article presents two main results. First, in Secs. II and III, it
is shown via formal derivation that the field-theoretic approach leads
to the definition of a correlation functional for an electrolyte solu-
tion. By applying the 1L approximation together with a local-density
approximation (LDA), we derive a 1L–LDA correlation functional,
F1L−LDA

sol [Eq. (22)], as the first-order correction to the coulombic
MF functional. Second, in Sec. IV A, it is demonstrated that F1L−LDA

sol
captures dielectric decrement and variation of the activity coefficient
with ion concentration in bulk electrolyte solutions. Embedding the
derived functional into an EDL model (Sec. IV B) achieves quan-
titative agreement with experimental capacitance data, which can
be attributed to the inclusion of coulombic correlation effects. The
reduction of the local interface activity coefficient of the electrolyte,
leading to increased counterion density, results in more pronounced
capacitance peaks with smaller peak-to-peak distances. This find-
ing underscores the relevance of coulombic correlation effects for
accurately describing the electric double layer (EDL) even in dilute
electrolyte solutions.

II. THEORY
The aim of this paper is to develop a variational functional

approach to describe the influence of coulombic electrolyte corre-
lations on the properties of the electric double layer formed at the
interface between a metal and an electrolyte solution. In this section,
the key result of this article is derived: a 1L–LDA correlation func-
tional for an electrolyte solution containing explicit ions and solvent
dipoles. Due to the numerous mathematical steps involved, the com-
plete derivation is given in Appendix A. This section delineates the
logic and the most significant steps in the derivation. Figure 1 shows
a schematic of the full derivation of the 1L–LDA functional. Steps
(a) to (d) in the figure correspond to paragraphs within this section.

The potential energy of a system of point ions and point dipoles
describing the electrolyte phase is given by

U =
1
2∫r,r′

ρ(r)V(r, r′)ρ(r′) + ∫
r
∑

j=a/c/s
vext

j (r)nj(r). (1)

FIG. 1. Logic behind the derivation of the 1L–LDA correlation functional starting
from the basic partition function.
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The first term is the coulombic interaction V(r, r′) between the
constituents of the charge density,

ρ(r) = ∑
i=a/c

qi

Ni

∑
k=1

δ(r − ri,k) +
Ns

∑
k=1
(p⃗k ⋅ ∇)δ(r − rs,k), (2)

which accounts for point-like ions of charge qi and point-like dipoles
with dipole moment p⃗k. N j is the particle number and rj,k is the posi-
tion of particle k of species j. The external potential vext

j (r) describes
the coupling of external boundary conditions to the electrolyte
densities of species j,

nj(r) =
Nj

∑
k=1

δ(r − rj,k). (3)

This external potential is used in the interface model described in
Sec. III to couple the electrolyte solution to the electrode system.

The starting point for the derivation of the electrolyte vari-
ational functional is the first-principles grand-canonical partition
function,

Zgc(μj) =∑
Na

∑
Nc

∑
Ns

λNa
a λNc

c λNs
s ∏

i=a/c

1
Ni!Λ3Ni

i

Ni

∏
k=1
∫

ri,k

×
1

Ns!Λ3Ns
s

Ns

∏
k=1
∫

rs,k
∫

dΩk

exp (−βU), (4)

where λj = exp(βμj) is the fugacity, Λj is the thermal wavelength of
ions and solvent species, and β is the inverse of the thermodynamic
temperature.

A. Hubbard–Stratonovich transformation
To make the partition function more amenable to analyti-

cal manipulations in a first step, a Hubbard–Stratonovich39 (HS)
transformation is used to map the partition function, Eq. (4), to a
functional integral,

Zgc(μj) = ∫ Dψe−βS[ψ], (5)

of the HS field ψ over an action functional,

S[ψ] = ∫
r

⎛

⎝

ε0

2
(∇ψ(r))2

− ∑
i=a/c

β−1λiΛ−3
i e−βvext

i (r)e−iqiβψ(r)

− β−1λsΛ−3
s e−βvext

s (r) sinh (ipβ∣∇ψ(r)∣)
ipβ∣∇ψ(r)∣

⎞

⎠
, (6)

which captures the physics of the underlying statistical system.43,50

From the grand-canonical partition function, one can compute the
grand potential,

Ω(μj) = −
1
β

log Zgc(μj), (7)

and functional averages,

⟨. . .⟩ ≡
1

Zgc
∫ Dψ(. . .)e−βS[ψ], (8)

such as the electrostatic potential, by

ϕ(r) ≡ i⟨ψ(r)⟩. (9)

By introducing auxiliary potentials vaux
j , coupling to density nj, and

an auxiliary charge density ρaux, coupling to the electrostatic poten-
tial ϕ, the grand potential function of chemical potentials Ωsol(μj) is
promoted to a functional Ω̃sol[vaux

j , ρaux] of the auxiliary fields, which
we denote by an additional tilde symbol, and the implicit depen-
dency on μj is suppressed herein. For vanishing auxiliary fields,
vaux

j = ρaux = 0 Ωsol = Ω̃sol holds. The auxiliary fields can be used to
compute the electrostatic potential and electrolyte densities,

ϕ(r) = −
δΩ̃sol

δρaux(r)
, nj(r) =

δΩ̃sol

δvaux
j (r)

. (10)

For any auxiliary potential vaux
j or auxiliary charge distribution ρaux,

there is a one-to-one correspondence to a specific density or poten-
tial distribution, respectively. The equilibrium densities neq

j and
potential distribution ϕeq correspond to vaux

j = 0 and ρaux = 0.

B. Legendre transformations
To derive a variational functional, in a second step, we apply

Legendre transformations to replace the dependence of Ω̃sol on
the auxiliary fields by the electrostatic potential and the electrolyte
densities,

Ωsol[nj(r),ϕ(r)] = Ω̃sol[v
aux
j (r), ρaux(r)] + ∫

r
ρaux(r)ϕ(r)

− ∑
j=a/c/s

∫
r

vaux
j (r)nj(r), (11)

for which

δΩsol[nj(r),ϕeq
(r)]

δϕ(r)
= 0,

δΩsol[n
eq
j (r),ϕ(r)]
δnj(r)

= 0, (12)

when evaluated at ϕeq and neq
j . At ϕeq and neq

j , the value of the vari-
ational functional is the same as the value of the original grand
potential,

Ωsol[n
eq
j (r),ϕ

eq
(r)] = Ωsol(μj), (13)

explaining why we label the variational functional with the same
symbol as the grand potential. This is a classical result from den-
sity functional theory.31 Note that these results are general and not
limited to our specific electrolyte model.

So far, the derivation has been exact. In order to derive an
explicit expression for the variational functional, one has to use
approximations. In this article, we are interested in a model capa-
ble of describing dilute electrolyte solutions near weakly charged
surfaces (see Appendix A 5).

C. One-loop expansion
The Legendre transformations introduced above are divided

into two steps. The first step exchanges the auxiliary charge density
with the electrostatic potential,

Γ[vaux
j (r),ϕ(r)] = Ω̃sol[v

aux
j (r), ρaux(r)] + ∫

r
ϕ(r)ρaux(r). (14)
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In the loop expansion, only valid in the dilute limit,38 and for weakly
charged surfaces, cf. Appendix A 5, the Hubbard–Stratonovich field
ψ is perturbatively expanded around the saddle-point configuration
ψ = i−1ϕ of the action that satisfies δS/δψ = 0. In this work, terms up
to one-loop order are kept, which leads to

Γ[vaux
j ,ϕ(r)] = S[i−1ϕ] +

1
2β

tr log βG−1. (15)

In this equation, the first term is the action functional evaluated at
the saddle-point, and the second term contains the inverse of the
correlation function G, defined by

G−1
(r, r′) =

δ2S
δψ(r)δψ(r′)

∣

ψ=i−1ϕ
, (16)

which describes coulombic correlation effects in the system.
The second step of the Legendre transformations, exchanging

vaux
j with nj,

Ωsol[nj ,ϕ] = Γ[vaux
j ,ϕ] − ∑

j=a,c,s
∫

r
vaux

j (r)nj(r), (17)

can be performed by first inverting Eq. (10) to obtain auxiliary
potentials as functions of the electrolyte densities. These potentials
can then be reinserted into Eq. (17). The functional Ωsol[nj,ϕ] splits
into two parts,

Ωsol[nj(r),ϕ(r)] = Fsol[nj(r),ϕ(r)] − ∑
j=a/c/s

μj∫
r

nj(r), (18)

where Fsol is a universal free energy functional of the electrolyte
densities and electrostatic potential,

Fsol[nj(r),ϕ(r)] = F
id
sol +F

mf
sol +F

corr,1L
sol +∑

j
∫

r
vext

j (r)nj(r).

(19)
The first term, denoted by

F
id
sol = ∫

r
∑

j
β−1nj(r)(log (nj(r)/nref

j ) − 1) + ∫
r
∑

j
μref

j nj(r),

(20)
is the free energy functional of an ideal (non-interacting) gas. The
second term,

F
mf
sol = ∫

r
(−

ε0

2
(∇ϕ)2

+∑
i

ni(r)qiϕ(r)

− ns(r)β−1 log(
sinh (pβ∣∇ϕ∣)

pβ∣∇ϕ∣
)), (21)

is the standard electrostatic MF functional. The third term,

F
corr,1L
sol = ∫

r
∑

j
nj(r)εcorr,j(r) +

1
2β

tr log βG−1, (22)

is the novel 1L correlation functional, with

εcorr,j(r) = −β−1
(log (lj(r)/lref

j ) +
1

lj(r)
− 1), (23)

and scaling functions

li(r) ≡ 1 −
βq2

i

2
G(r, r), (24)

ls(r) ≡ 1 +
βp2

2
(L

2
+L

′
)∇

2G(r, r), (25)

with L ≡ L (u) = coth (u) − 1/u and L ′ ≡ L ′(u), which are the
Langevin function and its derivative, respectively, and u = pβ∣∇ϕ∣.
The correlation functional in Eq. (22) depends directly on the corre-
lation function G, defined by Eq. (16), determined by solution of the
differential equation

−∇r′(εG(r′)∇r′G(r, r′)) + ∑
i=a/c

q2
i βni(r)G(r, r′) = δ(r − r′), (26)

with
εG(r) = ε0 + p2βns(r)(L 2

+L
′
). (27)

The correlation functional in Eq. (22) in conjunction with Eq. (26)
is a primary result of this article. Describing both ions and solvent
molecules explicitly on equal footing is in contrast to, for exam-
ple, electrolyte functionals based on the primitive model,51,52 which
considers ions explicitly but accounts for the solvent as a dielectric
background.

D. Local-density approximation
Besides nj and ϕ, the correlation functional Eq. (22) depends on

the correlation function G through both the tr log term and the scal-
ing functions in Eqs. (24) and (25). Since G, defined through Eq. (26),
cannot be determined in closed form for arbitrary distributions of nj
and ϕ, the second main approximation in this article is the local-
density approximation (LDA), a common assumption in deriving
correlation functionals in classical and electronic DFT.53,54 In LDA,
the correlation functional is derived assuming constant field distri-
butions, which allows us to compute the correlation function G as a
pure local function of the electrolyte density and electrostatic poten-
tial. Due to LDA, bulk electrolyte correlation effects are taken into
account, whereas non-local correlation effects between electrode and
solution are not addressed in this work.

The correlation parameters in Eqs. (24) and (25) depend on
the diverging equal-point correlation function (formally ultravio-
let divergence).42 This issue is inherent to point-charge models. To
address this issue, we introduce two short-distance cutoffs in the
computation of the equal-point correlation function [Eqs. (B20)
and (B22)]: ai for calculating li in Eq. (24) and as for ls in Eq. (25). In
LDA, the scaling functions Eqs. (24) and (25) have the form

li(r) = 1 −
βq2

i

4π2εG(r)
(

2π
ai
−

1
λD(r)

arctan(2π
λD(r)

ai
)), (28)

ls(r) = 1 −
βp2

4π 2εG(r)
(L

2
+L

′
)(

8π3

3a3
s
−

2π
λD(r)2as

+
1

λD(r)3 arctan(2π
λD(r)

as
)). (29)

These cutoff parameters ai and as are adjustable and directly tune
the resulting electrolyte properties such as activity coefficients and
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dielectric permittivity. In Sec. IV A, we discuss how these parameters
can be calibrated to experimental data.

E. Variational equations
In practice, the functional derivatives of the 1L–LDA functional

are of primary importance because they appear in the variational
equations for electrostatic potential and electrolyte densities, shown
in Eq. (12).

The variational equation for ϕ requires functional differen-
tiation of the free energy terms in Eq. (19). The ideal gas func-
tional is independent of ϕ (δF id

sol/δϕ(r) = 0), whereas the functional
derivative of the MF functional is

δFmf
sol

δϕ(r)
=∑

i
qini(r) −∇ ⋅ (−ε0∇ϕ(r) −

nsp
∣∇ϕ∣

L (pβ∣∇ϕ∣)∇ϕ(r)).

(30)
The variational derivative of the 1L–LDA correlation functional with
respect to ϕ yields

δF corr,1L−LDA
sol
δϕ(r)

=∇ ⋅ [
ns(r)p
∣∇ϕ(r)∣

(L 3
+3L L ′+L ′′)

L 2
+L ′

(1− ls(r))∇ϕ(r)].

(31)
Summing up, the variational equation for the electrostatic potential
yields the Poisson equation,

−∇(ε1L
(r)∇ϕ(r)) =∑

i
qini(r), (32)

where the correlation functional contributes to the value of the
dielectric permittivity,

ε1L
(r) = ε0 +

nsp
∣∇ϕ∣
(L +

(L 3
+ 3L L ′ +L ′′)

L 2
+L ′

(1 − ls)). (33)

The first two terms are known from MF theory of the point-dipole
model.50 The third term describes the influence of solvent–solvent as
well as ion–solvent correlation effects on the value of the dielectric
permittivity.55 Note that the third term, determined by ls, depends
on as, as shown in Eq. (29).

Similarly, the variational equation for the electrolyte densities,
Eq. (12), requires functional differentiation of the free energy terms
in Eq. (19) with respect to nj. The functional derivative of the ideal
gas term is the same for all electrolyte species,

δF id
sol

δnj(r)
= β−1 log (nj(r)/nref

j ) + μ
ref
j . (34)

The functional derivatives of the MF excess functional vary by parti-
cle species, as ions interact with the electrostatic potential differently
from solvent molecules. For ions, the functional derivative is

δFmf
sol

δni(r)
= qiϕ(r), (35)

whereas for the solvent molecules,

δFmf
sol

δns(r)
= −β−1 log(

sinh (pβ∣∇ϕ∣)
pβ∣∇ϕ∣

). (36)

The functional derivative of the correlation functional is of the same
form for all electrolyte species,

δF corr,1L−LDA
sol
δnj(r)

= −β−1 log (γj), (37)

where
γj = (lj(r)/lref

j )
−1 (38)

is the activity coefficient of particle species j determined by the
scaling functions of Eqs. (28) and (29). This shows that, as in
Debye–Hückel (DH) theory, coulombic correlations modify the
activity coefficient of electrolyte species. However, in contrast to
DH theory, the correlation functional of Eq. (19) also accounts for
ion–solvent and solvent–solvent correlations in addition to ion–ion
interactions. Note that the activity coefficients directly depend on
the cutoff parameters ai and as.

In summary, the variational equation for the electrolyte species
assumes Boltzmann-like relations,

ni(r) =
li(r)
lref
i

nref
i exp [β(μi − μref

i ) − βqiϕ(r) − βvext
i (r)], (39)

ns(r) =
ls(r)
lref
s

nref
s exp [β(μs − μref

s )

+ log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
) − βvext

s (r)], (40)

where the correlation functional produces an additional pre-factor
lj(r)/lref

j compared to the MF result.15

F. Coupling the electrolyte system
to an electrode model

Modeling charged electrode–electrolyte interfaces requires
combining the electrolyte model with one for the metal electrode,15

often done by heuristically summing free energy contributions into
a total electrode–electrolyte grand-potential,

Ωtot = Fsol +Fext − ∑
j=a/c/s

∫
r
μjnj(r). (41)

The external free energy functional Fext then acts upon the
electrolyte system akin to an external potential,

vext
j (r) =

δFext

δnj(r)
, (42)

cf. Eq. (19). We define the external functional

Fext = Ωel[ne,μe] +Fel−sol[ne, nj], (43)

which consists of an electrode grand-potential functionalΩel[ne, μe]

that depends on the electron density, ne, and the electron chemical
potential, μe. The functional

Fel−sol = ∫
r,r′

ρsol(r)ρel(r′)
4πε0∣r − r′∣

(44)

describes the coupling between the electrode charge ρel(r)
= (ρcore(r) − e0ne(r)) (ρcore is the atomic core charge density of the
metal) and the solution charge density
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ρsol(r) = ∑
i=a/c

qini(r) +∇ε(r) ⋅ ∇ϕ(r), (45)

which consists of the ionic charge density and the bound charge due
to the spatially varying permittivity. The external potential [Eq. (42)]
created by the electrode subsystem [Eq. (43)], coupling to the ion
densities, is simply the Coulomb potential generated by the electrode
charge density,

vext
i (r) = qi∫

r′
ρel(r′)

4πε0∣r − r′∣
. (46)

This MF coupling, however, does not take into account correlation
effects between the metal and electrolyte. Therefore, only correla-
tion effects in the electrolyte solution are considered in the present
theory.

III. INTERFACE MODEL
Subsequently, we employ the developed functional formalism

for studying correlation effects in the electrical double layer (EDL)
and, more specifically, the influence of coulombic correlations on the
interfacial capacitance. The electrode subsystem describes the metal
and the electron density through an orbital-free DFT (OFDFT)
model with a jellium background for the atomic charges. The elec-
trolyte system describes the diffuse part of the EDL and is modeled
via the solution free energy functional [Eq. (19)] and an additional
heuristic lattice gas model that describes volume exclusion.23 The
third subsystem is situated between the metal and the solution and
represents a dense ionic layer. This contact interface layer is stabi-
lized by an additional repulsive interaction that defines the distance
of closest approach for the electrolyte species to the metal sur-
face. The width and dielectric permittivity of the interface layer are
adjustable such that the contact layer capacitance assumes a value
such that the value of the total capacitance (that consists of the con-
tact layer and diffuse layer capacitance) is in agreement with the
capacitance value observed in the experimental data at the potential
of zero charge (pzc). Keeping the contact layer capacitance constant,
one can study the influence of the correlation functional on the prop-
erties of the diffuse part of the EDL. In the past, the combination of
an OFDFT for the electrode together with a mean-field cDFT model
for the electrolyte has been termed density-potential functional the-
ory.56 In this paper, instead of the MF functional, the 1L functional
derived in Sec. II is used to model the electrolyte solution.

A. Combined free energy functional
for a metal–electrolyte system

We here couple the OFDFT electrode model, represented by
a free energy functional Fel, to the electrolyte functional Fsol of
Eq. (19) via the interaction functional Fel−sol of Eq. (44). The com-
bined grand potential functional of the electrode–electrolyte system
thus reads

Ω[ϕ, nj , ne] = (Fel − ∫
r

neμe) +Fel−sol +Frep

+
⎛

⎝
Fsol +Fst − ∑

j=a/c/s
∫

r
njμj
⎞

⎠
, (47)

where the round brackets contain contributions of electrode and
electrolyte sub-systems, respectively. In addition to the fundamen-
tally derived functional Fsol, one empirical functional contribution
was added to the solution system: the steric functional Fst that
embodies volume exclusion due to finite ion sizes as described
by a lattice gas model. As shown in Fig. 2, in between the elec-
trode and the electrolyte, an additional interface contact layer was
added through the heuristic repulsive functional, Frep, that pre-
vents the electrolyte species from entering the metal electrode
region. These additional functionals are explained in more detail in
Secs. III A 1–III A 3. As derived in Sec. II, the equilibrium distribu-
tions of the total electric potential, electron density, and electrolyte
densities are obtained as solutions to the variational Euler–Lagrange
equations of the combined grand potential functional, Eq. (47),

δΩ
δϕ
= 0,

δΩ
δne
= 0,

δΩ
δnj
= 0, j = a, c, s. (48)

In the following, the additional functional contributions appearing
in Eq. (47) will be introduced, and the detailed set of Euler–Lagrange
equations will be stated as given in Eqs. (54), (61), (65), and (66).

1. Electrode
For more details of the OFDTF functional, we refer the

reader to a previous publication.15 The OFDFT electrode functional
consists of four terms,

Fel = Te +Uex +Uc +Ucoul, (49)

where Te is the kinetic energy from Thomas–Fermi theory,57

Te = ∫
r

eaua−3
0 tTF(1 + θTs2

), (50)

with the atomic energy denoted by eau = e2
/(4πε0a0) and the Bohr

radius by a0. The volumetric kinetic energy, tTF(ne), and cor-
rection s(ne,∇ne) are functions of the electron density and its
gradient. In our previous works, the electrode model has been dis-
cussed in detail.15 Hence, only the physical meaning of the terms

FIG. 2. Schematic of the model region, consisting of three layers. The metal slab
(layer I) of width lel is represented by a jellium model for the metal atomic cores with
density ncore (constant positive background) and electrons. It is in contact with an
electrolyte layer (layer III) of width lsol consisting of hydrated cations (red), hydrated
anions (blue), and solvent molecules (indicated by arrows). The latter contribute
to the spatially dependent dielectric permittivity ε (schematically indicated as a
purple curve). The electrode and the solution region are separated by a contact
layer (layer II) of width lcl and dielectric permittivity εcl.
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is provided herewith. For further details on the explicit depen-
dence on electron density, please refer to the Appendix of Ref. 15.
Exchange (Uex) as well as correlation (Uc) terms are taken from the
Perdew–Burke–Ernzerhof (PBE) functional,57,58

Uex = ∫
r

eaua−3
0 uex(1 + θexs2

), (51)

Uc = ∫
r

eaua−3
0 (uc + θcnea3

0t2
). (52)

In the above expressions, uex(ne) is the volumetric exchange energy,
and uc(ne) is an interpolation of the volumetric correlation energy
of a uniform electron gas. The s(ne,∇ne) and t(ne,∇ne) serve as
corrections to the exchange correlation energies. While the para-
meters θex and θc have recommended values, the parameter θT needs
to be determined for a specific metal. In a previous publication, θT
was determined for an Ag(111) electrode.15 This same electrode is
modeled in this article. Finally, the electrostatic self-energy of the
electrode subsystem is

Ucoul =
1
2∫r,r′

ρel(r)ρel(r′)
4πε0∣r − r′∣

. (53)

The respective Euler–Lagrange equations for the metal–electronic
subsystem are obtained from the functional derivative of Ω with
respect to ne, cf. Eq. (48), yielding

a2
0∇ ⋅ ∇ne =

20
3

ne
ω

θTω − θ′X
(
(μe(r) − e0ϕ) − μe

eau
), (54)

with

μe(r) = eau(a−3
0

∂tTF

∂ne
+ a−3

0
∂u0

X

∂ne
+ a−3

0
∂u0

C

∂ne
). (55)

2. Contact layer
The contact layer (layer II in Fig. 2) serves two purposes. First,

the repulsive potential prevents the electrolyte from entering the
metal skeleton. Second, it modifies the value of the total capacitance,
similar to the Helmholtz capacitance in the GCS model. The contact
layer is adjusted to match the value of the experimental capacitance
at the pzc tuning lcl and εcl. Once parameterized, the values of the
contact layer properties are kept constant throughout this paper.
Thus, the influence of the contact layer on the behavior of the dif-
fuse part of the EDL is kept constant. The repulsive functional has
the form

Frep = ∫
r
∑

j=a/c/s
njWj , (56)

with functional derivatives

δFrep

δnj(r)
=W(r), (57)

where W is the repulsive potential acting on electrolyte species for
which we use

W(r) = ω ⋅Θ(lcl − d(r)), (58)

with ω > 0. The function d(r) is the distance from position r to the
metal surface. For a planar interface, as depicted in Fig. 2, with x

being the coordinate perpendicular to the surface, d(r) = x − lel. As
a consequence of the repulsive potential, within the region, lel < x
< lel + lcl is solvent free, resulting in a reduction of the permittivity to
εcl. The contact layer values lcl and εcl define the contact layer capac-
itance that is used in Sec. IV B to align the total capacitance to the
experimental value at the pzc. We fix parameters of the contact layer
in all calculations in order to highlight the effect of the correlation
functional on the properties of the diffuse part of the EDL.

3. Electrolyte
The solution functional Fsol given in Eq. (19) describes the

diffuse layer of the EDL, as discussed in Sec. II. In addition to
the ideal gas functional F id

sol, Fsol consists of the electrostatic MF
functional FMF

sol and the derived correlation functional F corr,1L−LDA
sol ,

which describes inter-electrolyte particle correlation effects such as
screening and solvation. It is important to note that the solution
functional F corr,1L−LDA

sol is limited by the two main approximations.
Due to the 1L expansion, F corr,1L−LDA

sol is only applicable in the dilute
limit. Due to the local density approximation (LDA), F corr,1L−LDA

sol
is only applicable for weakly changing densities and therefore does
not capture non-local correlations that may lead to oscillating pro-
files of electrostatic potential, polarization, and ion densities. In this
limit, the electrolyte particles are weakly correlated, in contrast to
the strong correlation limit, i.e., high concentrations, high surface
charge, and low permittivity. In future work, it would be interesting
to go beyond the 1L approximation and derive a non-local func-
tional to investigate whether such extensions can reproduce features
such as charge oscillations and overscreening similar to models with
gradient terms.48,49,59

The steric functional Fst in Eq. (47) is responsible for finite-size
effects of electrolyte species, which prevent unphysically large ion
densities at the charged electrode–electrolyte interface. At this stage,
Fst is only heuristically added to the model, as opposed to the first-
principles approach of the correlation functional. However, Fst is
essential for describing the double-peak capacitance curves resulting
from ion crowding in the surface boundary layer at high double-
layer charges. The point charge model used in this paper does not
capture these effects. Future extensions to a hard-sphere electrolyte
model will allow a consistent treatment of both finite-size effects
and coulombic correlations on an equal footing. Following the Bik-
erman approach,24 steric effects are accounted for using the excess
free energy of an ideal lattice gas.23 In our previous publication,
ions and solvent dipoles occupy the same lattice.60 Due to the large
ion sizes required in the Bikerman approach,25 ionic crowding near
the interface leads to strongly underestimated solvent density and
permittivity compared to experimental data. Therefore we employ
separate lattices for ions and solvent molecules, respectively. The
ion lattice captures the lattice saturation effect at high surface charge
densities, which, together with dielectric saturation, is responsible
for the typical double-peak structure of electrochemical capacitance
curves.23 The solvent lattice serves to maintain the solvent density
as required due to water incompressibility.50 Of course, the two-
lattice approach entirely neglects the volume exclusion of solvent
by ions and therefore dielectric decrement due to volume exclu-
sion. However, the dielectric decrement due to volume exclusion is
minor in comparison with the decrement effect due to solvation, the
latter being captured by F corr,1L−LDA

sol . An estimated 1:1 solvent–ion
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replacement shows the dielectric decrement from volume exclusion
to be 78/(55M) = −1.4/M. This is much smaller than the observed
experimental decrement of about −10/M, indicating that solvation
effects dominate.61 Thus, the neglect of volume exclusion in the two
lattice approach is well justified.

In Bikerman theory, the free energy entails the steric contribu-
tions to the ion and solvent chemical potentials, given by

δFst

δni
= β−1 log(

1
1 − na/nion,max − αnc/nion,max

), (59)

δFst

δns
= β−1 log(

1
1 − ns/nsol,max

), (60)

where nion,max and nsol,max are the maximum densities of the ionic
and solvent lattices, respectively. Here, ions of unequal size are
described by a relative size factor α = (dc/da)

3 multiplying the cation
term in Eq. (59), where dc and da are the sizes of cation and anion.
The anion size is simply given by da = (nion,max)

−3, while the cation
size is given by dc = (α/nion,max)

−3. Similarly, the solvent size is
ds = (nsol,max)

−3. To summarize, the steric model has one free para-
meter for each of the three electrolyte species: da, dc and ds. Alterna-
tively, the maximum densities nion,max and nsol,max can be specified,
along with the relative size factor α. From now on, we stick to the
former.

Having introduced all contributions to the overall grand poten-
tial functional and their corresponding functional derivatives, we
state the complete Euler–Lagrange equations for the electrolyte den-
sities, nj, and the electrostatic potential, ϕ. As explained earlier, the
Euler–Lagrange equation for ϕ is the Poisson equation with the total
charge density of the system,

−∇(ε(r)∇ϕ) = ∑
i=a/c

qini(r) + e0(ncc(r) − ne(r)), (61)

where the permittivity along the metal–electrolyte interface is
given by

ε(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, x < lel,

εcl, lel < x < lel + lcl,

Eq. (33), x > lel + lcl.

(62)

Inserting the results for the functional derivatives with respect to nj
in Eqs. (34)–(37), (57), (59), and (60) into (48) leads to the following
expressions for the chemical potentials:

βμi = βμref
i + log(

ni(r)/nref
i

li(r)/lref
i (1 − na/nion,max − αnc/nion,max)

)

+ βqiϕ(r) + βWi(r) for i ∈ a/c, (63)

βμs = βμref
s + log(

ns(r)/nref
s

ls(r)/lref
s (1 − ns(r)/nsol,max)

)

− log(
sinh pβ∣∇ϕ(r)∣

pβ∣∇ϕ(r)∣
) + βWs(r). (64)

The chemical potentials appearing on the left-hand side of these
expressions are determined by the (external) reservoirs for the

grand-canonical ensemble and fix the respective bulk concentra-
tions of ions (and solvent molecules) in the bulk of the electrolyte.
We here note that in electrochemistry, chemical potentials includ-
ing electrostatic terms are typically referred to as electrochemical
potentials and denoted by μ̃j . In the present work, however, such
a distinction between chemical and electrochemical potentials is
unnecessary, because the fundamental chemical potentials μj intro-
duced in the grand canonical partition function of Eq. (4) naturally
include all electrostatic contributions, i.e., they are electrochemical
potentials by construction.

Until now, we have not specified the reference state in the
chemical potentials, cf. Eqs. (63) and (64). For a charged wall in
contact with an electrolyte solution, the bulk acts as a reservoir for
the solution species. Choosing the bulk electrolyte as the reference
state μref

j = μb
j , demanding chemical potential equilibrium μi = μb

i ,
and resolving Eqs. (63) and (64) for the respective densities lead to
Boltzmann-like relations for nj as a function of ϕ,

ni(r) = nb
ion

li(r)
lbi

Θi(r)
Dion(r)

, i ∈ a, c, (65)

ns(r) = nb
sol

ls(r)
lbs

Θs(r)
Dsol(r)

. (66)

Here, the functions

Dion(r) = χion,v +
la(r)

lba
χaΘa(r) +

lc(r)
lbc

χcΘc(r) (67)

and
Dsol(r) = χsol,v + ls(r)/lbs χsΘs(r) (68)

embody steric effects. The parameters χj = nb
j d3

j are the bulk vol-
ume fractions of particle type j normalized to maximum densities
d−3

j . Similarly, χion,v = (1 − χa − χc) and χsol,v = (1 − χs) are the bulk
volume fractions of empty sites. The corresponding Boltzmann
factors are

Θi(r) = exp (−βWi(r) − βqiϕ(r)), (69)

Θs(r) = exp(−βWs(r) + log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
)). (70)

As explained earlier, the ratios lj(r)/lbj encode the impact of coulom-
bic correlations on the particle densities in the form of effective
activity coefficients.

4. Solving the interface model
The differential equation for the electron density [Eq. (54)] and

the Poisson equation for the electric potential [Eq. (61)], along with
the modified Boltzmann relations of Eqs. (65) and (66), describe the
self-consistent coupling of a metal density functional with an elec-
trolyte density functional, with correlation effects included at the 1L
level. In this work, the solving of the coupled differential equations is
carried out using the commercial software COMSOL Multiphysics®.

B. Model parameters and boundary conditions
To investigate the influence of electrolyte correlations described

by the 1L–LDA functional on EDL charging characteristics, we
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specifically aim to model the interface between an Ag(111) metal
electrode and an aqueous KPF6 electrolyte solution. This particu-
lar system is chosen due to the weak specific adsorption of PF−6
anions on Ag(111), rendering the system close to an ideal polariz-
able interface.15 Furthermore, experimental capacitance data over a
wide range of electrolyte concentrations are available to validate and
compare with the model.62 Table I provides a list of all free model
parameters and the values chosen for them.

For a planar metal–electrolyte interface with translational sym-
metry in the yz direction, Eqs. (54) and (61) simplify to two coupled
one-dimensional ordinary differential equations of the x coordinate
perpendicular to the interface. Figure 2 illustrates a schematic of the
model region. The dimensions of the electrode slab (lel = 1 nm) and
the electrolyte solution domains (lsol = 15 nm) are sufficiently large
to allow all fields and densities to reach their bulk values. In the bulk
of the electrode, the electron density and the electric potential are
uniform, corresponding to the boundary conditions

dne(x = 0)
dx

= 0, (71)

dϕ(x = 0)
dx

= 0. (72)

At the opposite electrolyte boundary of the system (at x = lel + lcl
+ lsol), the electron density is zero and, by definition, the electric
potential reaches its zero reference value,

ne(x = lel + lcl + lsol) = 0, (73)

ϕ(x = lel + lcl + lsol) = 0. (74)

Two flavors of the combined free energy functional are
compared to evaluate the influence of the correlation functional
F corr,1L−LDA

sol on the simulated structure and charging characteris-
tics of the metal–electrolyte interface. The MF model corresponds
to Eq. (19) excluding the correlation functional F corr,1L−LDA

sol , while
the 1L model corresponds to the complete free energy functional
of Eq. (19). Parameters specific to each model are indicated by the
superscripts “MF” or “1L,” listed in the respective sections in Table I.
The equations for the MF model can be directly obtained by setting
lj = 1 in the complete model.

1. Electrode
The metal parameters of the OFDFT model are adopted

from the MF study previously presented for the Ag(111)–KPF6
interface.15 A uniform background charge ρcore(r) = e0ncc(r), with

ncc(r) = n0
ccΘ(lM − x), (75)

TABLE I. Parameters used in the MF and the 1L model for the EDL.

Symbol Description Value

Solution–physical
lsol Width of the solution region 15 nm
nb

ion Ionic bulk concentration 100 mM
nb

s Solvent bulk concentration 55.6M
z Ionic charge number 1

Solution–steric model
da Anion size 11.2 Å
dc Cation size 12.3 Å
ds Solvent size 3.1 Å

Solution–electrostatic MF model

pMF MF water dipole moment 4.8 D

Solution–electrostatic 1L–LDA model

p1L 1L water dipole moment 1.8 D
as Solvent cutoff 2.5 Å
ai (100 mM) Ionic cutoff 3.14 nm
ai (40 mM) Ionic cutoff 3.75 nm
ai (20 mM) Ionic cutoff 4.73 nm

Contact-layer
lcl Width of the contact layer 3 Å
ω Potential energy ∞

εcl Permittivity of the contact layer 6.13ε0

Electrode
lel Thickness of the metallic substrate 1 nm
n0

cc Electron bulk density 2.75 Å−3

θX PBE parameter 0.1235
θC PBE parameter 0.046
θT Kinetic parameter 2.08
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represents the positive charge from the metal atom cores, where
n0

cc = 2.75 Å−3 is the effective density of the cationic metal cores
that equals the electron density of cubic closed-packed Ag to main-
tain electroneutrality within the metal bulk. The parameters for
the PBE functional are summarized in Table I. Here, θX and θC
have the recommended values, while the gradient coefficient θT was
determined by the MF study of the Ag(111)–KPF6 interface.15 As
explained above, the chemical potentials used in this work corre-
spond to the full electrochemical potentials. Given the zero (electric)
potential reference defined in the bulk of the electrolyte, the elec-
tron chemical potential, μe, directly corresponds to the electrode
potential E = μe/e0, which controls the surface charge of the metal
electrode. In the following, we express the electrode potential as
E vs Epzc, where Epzc represents the potential of zero charge (pzc) of
the electrode–electrolyte interface, i.e., the potential where the metal
surface carries zero electronic excess charge and there is zero net
ionic charge accumulated in the EDL. On the pzc scale, a positive
electrode potential thus indicates a positively charged metal surface,
and vice versa.

2. Electrolyte
We next discuss the parameterization for the electrolyte subsys-

tem. Physical parameters are summarized in the Solution–physical
section of Table I. The bulk concentration of solvent molecules
(water) is fixed to nb

s = 55.6 M, and the valency of the ions (KPF6)
is fixed to z = 1.50 Parameters from the empirical steric model of
the solution functional are summarized in the solution–steric model
section of Table I. The sizes of the electrolyte species define the
maximum density allowed by the lattice gas model. To model the
incomprehensibility of water, we define the maximum density as
the bulk water density nsol,max = nb

sol, which results in an effective
size ds = 3.1 Å, which is slightly larger than the physical value
≈2.7 Å.63 As demonstrated by molecular dynamics (MD) simula-
tions, the dimensions of the PF−6 and K+ ions are 3–4 and 4–5 Å,
respectively.64,65 However, it is known that the sizes in the Biker-
man model are effective fit parameters, which are often much larger
than the physical values.25 The results in Sec. IV B show that the
model agrees well when anions have a radius of ra = 11.2 Å, while
cations are slightly larger with a radius of rc = 12.3 Å. Therefore, the
trend that the cation is larger than the anion is consistent with MD
simulations.64,65

So far, the parameters have been equal in both the MF and
1L model. Key model parameters for the MF and new correla-
tion functional are summarized in the solution–electrostatic MF and
solution–electrostatic 1L–LDA model sections of Table I, respec-
tively. In the MF model, the permittivity, Eq. (A75), depends only
on pMF and matches the experimental permittivity of bulk water
εW
= 78.2ε0 using pMF

= 4.8 D, which is significantly larger than the
actual water dipole moment of pW = 1.8 D.50,61 In the 1L model, the
permittivity, Eq. (33), is determined by two parameters: p1L and the
solvent cutoff as. This freedom allows us to use the physical dipole
moment of water p1L

= pW and determine as = 2.5 Å accordingly to
match the experimental permittivity of bulk water. It was already
highlighted in Eq. (38) that the parameter ai is related to the ionic
activity coefficient. It was found that using ai = 3.23 nm, Eq. (38) can
qualitatively reproduce the experimental activity coefficient of KPF6
as a function of ion concentration. The determination of as and ai

through properties of a bulk electrolyte solution is a key result of
this paper and is laid out in detail in Sec. IV A.

3. Contact layer
While the parameters for the electrode and electrolyte subsys-

tem can be obtained independently of EDL properties, the contact
layer region is added to repel the electrolyte from the interface and
obtain agreement with experimental capacitance data at pzc. The
repulsive potentials in Eq. (58) dictate the closest distance to the
metal surface that the particles can reach. This distance is in prin-
ciple arbitrary but is chosen to be lcl = 3 Å, which is in a range
of typical simulation results for the metal–solution gap.66 As men-
tioned before, the contact layer permittivity εcl is a fit parameter for
the EDL capacitance at pzc. It was found that using εcl = 6.13, the
capacitance agrees with the experimental one at pzc.

IV. RESULTS
The results section is divided into two parts. The first part

explains the parameterization of the electrolyte functional of Eq. (19)
using experimental bulk electrolyte data for an aqueous KPF6
solution, demonstrating that the correlation functional captures
quantitative trends in the dielectric permittivity and ionic activ-
ity coefficient as functions of ionic concentration. The second part
applies the fully parameterized EDL model of Eq. (47), showing that
including the correlation functional achieves quantitative agreement
with the shape of the capacitance curve around the potential of zero
charge (pzc).

A. Bulk electrolyte solutions
1. Dielectric permittivity of pure solvent (water)

In the MF model, the dielectric permittivity of a bulk solu-
tion (ϕ = 0), cf. Eq. (A75), can only be modified by tuning the MF
dipole moment pMF, assuming that bulk water concentration (nb

s
= 55.6 M) is fixed. The MF dielectric permittivity, εMF, equals water
permittivity, εW = 78.2,67 only with a dipole moment pMF

= 4.8 D
that is significantly larger than the physical dipole moment of water
pW = 1.8 D. This discrepancy is a common limitation of the MF
point-dipole model.50

In the 1L model, solvent–solvent correlations contribute posi-
tively to the dielectric permittivity [Eq. (33)] of pure water. There-
fore, in the 1L model, in addition to the dipole moment (p1L

), the
solvent cutoff (as) can be tuned so that ε1L

= εW. Using the physical
dipole moment of water (p1L

= pW = 1.8 D), the value of ε1L is shown
in Fig. 3(a) as a function of the solvent cutoff as. Solvent–solvent
correlations are weakened; hence, the permittivity is reduced by
increasing the solvent cutoff. The required solvent cutoff to match
the dielectric permittivity of pure water is about the size of a water
molecule as = 2.58 Å, which has been discussed in previous 1L stud-
ies.55 This shows that solvent–solvent correlation effects contribute
significantly to the permittivity of pure water.

2. Dielectric decrement as a function
of ion concentration

The MF dielectric permittivity εMF [Eq. (A75)] exhibits no
dependency on the ionic concentration, contrary to experimental
findings suggesting that the permittivity reduces with increasing salt
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FIG. 3. (a) The influence of solvent–solvent correlations on the dielectric permittivity of pure solvent [Eq. (33)] is shown, as a function of as for fixed p1L
= pW. Two grid-lines

indicate the experimental value εW on the y axis and the corresponding value for as on the x axis. (b) Dielectric permittivity as a function of ionic strength Ic representing
the influence of ion–solvent correlations. Experimental values for NaCl (triangle) and KF (circles) for solutions up to 1 mol/l concentration are shown along with the model
permittivity, Eq. (33) for as = 2.58 Å.61

concentration called dielectric decrement.55 Two phenomena con-
tribute to the dielectric decrement: first, the decrease of effective
water concentration due to steric exclusion of water molecules by
dissolved ions and second, the loss of orientational degrees of free-
dom of water molecules in the solvation shell around dissolved ions.
In the ion concentration range considered here (<0.5 mol/l), the
former effect is negligible, and the dielectric decrement is mostly due
to solvation. The 1L model dielectric permittivity, ε1L, depends on
the salt concentration via the Debye length λD through the correla-
tion parameter ls in Eq. (33). Figure 3(b) depicts ε1L from Eq. (33)
as a function of ionic strength, Ic = (na + nc)/2, in comparison with
experimental data of KF and NaCl. Since the solvent cutoff as is
already determined by the pure water permittivity, there is no free
parameter left, and the curve of ε1L vs Ic is thus fixed. The respective
plot in Fig. 3(b) shows a dielectric decrement with a slope that quan-
titatively well agrees to the experimental data, demonstrating that
the 1L model is able to correctly capture the process of ion solva-
tion in water in the form of a dipolar polarization shell around ionic
point charges.

The slope of the experimental dielectric decrement is salt ion
species specific. In Sec. IV B, an Ag(111)–KPF6 interface is sim-
ulated for which the dielectric decrement of KPF6 is of interest.
Since experimental values for the dielectric decrement of KPF6 are
not available, the dielectric decrement of KPF6 must be estimated.
The dielectric decrement of a general salt can be decomposed into
two distinct contributions, each due to one of the salt ion species.68

The dielectric decrement due to K+ is known;68 in addition, larger
anions have a stronger dielectric decrement, indicating that the total
dielectric decrement of KPF6 should be larger than KF but smaller
than NaCl. This means that the 1L model shown in Fig. 3(b) is in
good quantitative agreement with the dielectric decrement estimated
for KPF6.

3. Ionic activity coefficient
The ionic activity coefficient is a measure of the chemical-

potential change arising from ion–ion correlations.69 In the MF
model, ion–ion correlations are absent, and the activity coefficient
for all particle species is one. The activity coefficient in the 1L model
is directly related to the inverse of the scaling factors li in Eq. (38)

with respect to a certain reference state. For the EDL model, it was
highlighted in Sec. III A that it is convenient to choose the bulk reser-
voir of an electrolyte solution as the reference state, μref

i = μb
i . With

respect to the bulk reference, the activity coefficient, cf. Eq. (38), is
given by

γi = (li/lbi )
−1. (76)

The activity coefficient as a function of ionic strength is shown
in Fig. 4 for three different values of the parameter ai, using a refer-
ence state of 100 mM ionic strength. The model curves are compared
with experimental data of the mean activity coefficient (γ±) of an
aqueous KPF6 solution. For a 1 : 1 electrolyte solution, the mean
activity coefficient γ± is equal to the individual ionic activity coef-
ficient γ± = (γaγc)

1/2
= γi.69 In order to compare the 1L model with

experiment, it is essential that all activity coefficients are expressed
with respect to the same reference state. Experimental mean activity
values in Fig. 4 are normalized to the mean activity coefficient at 100
mM ionic strength.70

The ionic cutoff, ai, strongly affects the slope of the activity
curve in Fig. 4. The optimal value of ai depends on the concen-
tration range considered. In Sec. IV B, the 1L–LDA functional is
applied to the study of an electrode–electrolyte interface where the

FIG. 4. Activity coefficient, γi [Eq. (76)], as a function of ionic strength Ic for three
different values for ai . The experimental values of the mean activity coefficient of
KPF6 (squares) are normalized to the respective value at Ic = 100 mM.
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maximum interfacial ion concentration is about 500 mM in the
range of the considered electrode potential. Accordingly, for bulk
concentration of nb

ion = 100 mM, the value of ai = 3.14 nm is chosen
to match the value of the 1L activity coefficient (γi) to the experi-
mental one at an ionic strength of Ic = 500 mM. For nb

ion = 40 mM
and nb

ion = 20 mM, a value of 3.75 and 4.73 nm, respectively, is
required. Better agreement with experiments over a wider concen-
tration range would necessitate higher order terms beyond the 1L
level, which is beyond the scope of this work but is planned for the
future.

It is observed in Fig. 4 that the activity coefficient of the 1L
model declines too steeply at low concentration and too weakly
at higher concentration in comparison with the experiment. This
discrepancy is mainly due to the fact that the 1L equation for the
activity coefficient [Eq. (76)] effectively contains the MF expression
for the dielectric permittivity [Eq. (A75)]. As discussed earlier, in
the 1L model, the physical dipole moment of the water molecule is
employed, which yields the correct dielectric permittivity at the 1L
level but results in a significantly lower permittivity when used in the
MF expression. The result is an effective Debye length that is con-
siderably smaller than the value obtained when the true bulk water
dielectric constant is used. Using a larger dipole moment, closer to
the MF dipole moment p1L

≈ pMF, results in a more accurate Debye
length and thus a better agreement with the activity coefficient.
However, this also causes the dielectric decrement to disappear. At
the 1L stage of the model, it is thus not possible to improve the
quantitative agreement for the activity coefficient without worsen-
ing the agreement for the dielectric decrement. Further development
going beyond the 1L approximation will be needed to resolve this
ambiguity.

It should be noted that the discrepancy between the effective
Debye length and the physical one is confined to this particular
aspect of the activity coefficient. The Poisson equation contains the
1L dielectric permittivity, cf. Eq. (32), and thus provides the correct
Debye length. Therefore, quantities on a 1L level such as the inter-
facial capacitance, calculated in Sec. IV B, are not influenced by the
relatively small effective Debye length.

Depending on the bulk electrolyte concentration considered,
the reference state for the activity coefficient changes and the value of
ai must be adjusted accordingly. Table I displays values of ai for the
bulk concentrations 40 and 20 mM. For smaller bulk concentrations,
the required value of ai increases.

In summary, applied to the bulk electrolyte solution, the
1L–LDA functional correctly captures solvent–solvent correlations
that make a significant contribution to the bulk water permittiv-
ity. The obtained dielectric decrement due to the solvation of ions
(solvent–ion correlations) is also in good agreement with the exper-
imental data. Ion–ion correlations are correctly found to reduce
the ionic activity coefficient, which qualitatively agrees with the
experimental activity coefficient for KPF6 solutions, although certain
quantitative discrepancies exist.

B. Metal–solution interface
The parameterization of the 1L–LDA functional was fixed as

described in Sec. IV A. In this section, we investigate the role of
bulk electrolyte correlation effects, captured by the parameterized
1L–LDA functional, on interfacial EDL properties. For the sake of
clarity, when utilizing the 1L–LDA functional, fields and parameters
are denoted by the superscript “1L,” while for the MF model, the
superscript “MF” is used. The respective parameters are discussed
in Sec. III B.

1. Dielectric permittivity and activity
coefficient in the EDL

By shifting to a positive or negative electrode potential with
respect to the pzc, the electrode is charged with a positive or negative
excess of electronic charge, respectively. In Fig. 5(a), the electrostatic
potential (ϕ), the electrolyte densities (na, nc, ns), and the dielectric
permittivity (ε) are shown as functions of the coordinate x perpen-
dicular to the electrode surface for a negative electrode potential of
E = −0.1 V vs Epzc. Due to the negative surface charge, the electro-
static potential in the diffuse layer is negative, which raises the cation
density and reduces the anion density relative to the electrolyte bulk
value; see Eq. (65). The dielectric permittivity closely follows the
solvent density to which it is proportional [Eq. (62)].

In Sec. IV A, it was shown that electrolyte correlation effects
become manifest in the dielectric permittivity and activity coeffi-
cient. The present formalism allows us to plot the local dielectric
permittivity [Eq. (62)] and local activity coefficient [Eq. (76)] across
the EDL as functions of x, shown in Fig. 5(b). Away from the
electrode, where the densities are uniform, the activity coefficient
approaches γi = 1 since the bulk electrolyte is defined as the ref-
erence state for the activity coefficient; see Eq. (76). Closer to the

FIG. 5. (a) Density and potential distributions at the electrode–electrolyte interface obtained from the 1L model with parameters according to Table I at E = −0.1 V vs Epzc

and a 100 mM bulk electrolyte concentration. The gray area denotes the electrode, and the hatched area denotes the contact layer region. (b) Local activity coefficient (blue)
and the dielectric permittivity according to the MF (red dashed) and the 1L model (red solid) for the same parameters as in (a).
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interface, the local ionic strength increases, resulting in a lower
activity coefficient, cf. also Fig. 4. An activity coefficient smaller than
one means that the ion density [Eq. (65)] is multiplied by a scal-
ing factor (γ−1

i = li/lbi ), which is larger than one. In other words, the
ion density is enhanced compared to the MF case, where the activity
coefficient has a value of one.

In the MF model, the dielectric permittivity [red dashed curve
in Fig. 5(b)] assumes the value of pure water in the electrolyte bulk,
as already discussed in Sec. IV A. The strong reduction in dielectric
permittivity, close to the interface in Fig. 5(b), is determined by two
competing effects. On the one hand, the dipolar solvent medium is
attracted to the interface, due to the interfacial electric field, caus-
ing an increased solvent density and, hence, an increase in dielectric
permittivity. On the other hand, the same interfacial electric field
reduces the dielectric permittivity due to dielectric saturation, cf. the
Langevin function (L ) in Eq. (A75).50 In the 1L model, the value
of the dielectric permittivity in the electrolyte bulk [red solid curve
in Fig. 5(b)] is lower than that of pure water due to the solvation
effect discussed in Sec. IV A. Close to the electrode surface, the accu-
mulation of charge leads to an increase in local ionic strength, from
Ic = 100 mM in the electrolyte bulk to Ic ≈ 150 mM, cf. Fig. 5(a).
The increase in ionic strength in the diffuse layer reduces the dielec-
tric permittivity in the region 1 nm away from the contact layer by
about 2% relative to the bulk value. In contrast, the variation of the
activity coefficient from the electrolyte bulk is ∼20%. It can be con-
cluded that ion–ion correlations are considerably more important
than ion–solvent correlations around the pzc.

Subsequently, correlation effects are evaluated as a function of
electrode potential. In Fig. 6, 1L model predictions are compared
directly to MF model predictions of the electrostatic potential ϕ, the
activity coefficient γi, the excess charge ρ, and the dielectric permit-
tivity ε using the parameters from Table I. Two effects influence the
counterion density in the EDL, cf. Eq. (65), namely the electrostatic
potential and the activity coefficient. Figure 6(a) shows that the elec-
trostatic potential ϕ of the 1L model increases for negative E relative

to the pzc. For negative E, the cations are the counterions. Hence, if
only the electrostatic potential would be affected, the cation density
would be reduced compared to the MF model. However, Fig. 6(b)
shows that the activity coefficient in the EDL is decreasing for larger
E. This is entirely attributed to the fact that at higher E, the ionic
strength in the EDL is elevated. The decrease in γi alone would
result in an increase in cation density, cf. Eq. (65). The excess charge
density, ρ(r), of the electrolyte,

ρ(r) = nc(r) − na(r), (77)

is shown in Fig. 6(c). In total, the reduction in activity coefficient
[Fig. 6(b)] more than compensates for the elevation of the electro-
static potential [Fig. 6(a)], resulting in a net increase in counterion
density.

In general, it can be observed that the ion–ion correlation-
induced reduction in local activity coefficient results in increased
counterion density at the interface when compared to the MF model,
for a given value of E vs Epzc. The physical reason for this behavior
is that the MF model overestimates the Coulomb repulsion between
like-charged counterions.38 By accounting for screening of coulom-
bic interactions, as discussed in Sec. IV A, the mutual repulsion
of like-charged particles is reduced, which in turn increases the
counterion density.

The curves for positive and negative E (relative to Epzc)
are slightly asymmetrical about the abscissa. The asymmetry is
attributed to electronic and finite size effects that affect cation and
anion species differently. Correlation effects, on the other hand,
embodied in the scaling factors li, cf. Eq. (65), are affecting both ion
species on equal footing.

The difference in dielectric permittivity computed from the
MF and 1L model, shown in Fig. 6(d), is slightly negative in the
electrolyte bulk consistent with the difference shown in Fig. 5(b).
For larger electrode potentials, the ionic strength at the interface is
higher. Due to solvation, in the 1L model, the dielectric permittivity

FIG. 6. This figure shows from
E vs Epzc = 0.1 V to E vs Epzc = −0.1 V
(a) the electric potential corrections
in (mV), together with (b) the activity
coefficient for ions normalized to the
bulk value and (c) the change in
excess charge density of the electrolyte
normalized to the bulk concentration. In
(d), the change in dielectric permittivity
normalized to bulk water permittivity is
shown.
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at the interface is smaller for larger electrode potentials, compared
to the MF model, which does not capture solvation effects. Over-
all, the value of the dielectric permittivity in the diffuse layer is
reduced relative to the MF case for all electrode potentials consid-
ered in this study and further decreases at the interface with larger E.
However, the dielectric permittivity decrease is about 5% of the bulk
water value around the electrode potential window considered here
(around the pzc).

2. Interfacial capacitance
The interfacial capacitance is an important footprint of elec-

trified interfaces and experimentally accessible. The differential
capacitance can be calculated from the surface charge density,

σM = e∫
∞

0
(ncc(x) − ne(x))dx, (78)

as the partial derivative with respect to E,

Cd =
∂σM

∂E
. (79)

In Fig. 7(a), the differential capacitance is shown for the parameters
presented in Table I along with experimental capacitance data of an
Ag(111)–KPF6 system (circles).62 In white, the electrode potential
range is highlighted where the 1L–LDA functional is assumed to be
accurate, as the surface charge density does not exceed the upper
bound estimated in Appendix A 5. In the MF model (dashed), where
the 1L–LDA functional is not used, the double-peak structure of the
capacitance curve is reproduced, although there are quantitative dis-
crepancies in peak height and peak-to-peak distance compared to
experiment. Using the 1L–LDA functional, the capacitance peaks
are significantly more pronounced, and the peak-to-peak distance is
smaller compared to the MF model. The more pronounced shape
is due to the elevated excess charge at equal electrode potential,
which was observed in Fig. 6(c). The reduced activity coefficients
at the interface [see Fig. 5(b)] increase the counterion density and
thus lead to an increase in surface charge density at the same elec-
trode potential. The reduction in dielectric permittivity, cf. Fig. 6(d),
partially counterbalances the increase of interfacial capacitance. It is
noteworthy that using the 1L–LDA functional significantly improves
the agreement with the experimental data around the pzc (shown
as inset), which is a key finding of this article. Better agreement

near the pzc cannot be achieved by adjusting the parameters of the
empirical steric model. Smaller ion sizes shift and increase capaci-
tance peaks to higher potentials, while larger ions shift and lower the
capacitance peaks to smaller potentials. In contrast, better agreement
with experimental data requires higher peaks at lower potentials. At
higher electrode potentials (∣E vs Epzc∣ > 0.1 V), differential capaci-
tance curves computed from the MF and the 1L model overestimate
experimental values. In this potential range, steric effects domi-
nate the EDL structure, which are accounted for in this work by
the heuristic lattice gas model.24 However, the 1L model produces
lower capacitance values compared to the MF model. The lower
capacitance is due to lower dielectric permittivity in the 1L model,
which results in a lower diffuse layer capacitance. Model results for
concentrations of 100, 40, and 20 mM (solid), along with exper-
imental results (symbols), reported by Valette,62 are presented in
Fig. 7(b). In addition, the MF model results are presented in the same
color but dashed. In the region around the pzc, where the 1L–LDA
functional applies, which is the potential range ∣E vs Epzc∣ < 0.1 V,
the model agrees well with experimental results across all elec-
trolyte concentrations. The improved agreement around the pzc,
which arises naturally as the 1L–LDA functional is parameter-
ized using bulk electrolyte experimental data without fitting to
capacitance data, demonstrates that electrolyte correlation effects
significantly influence the differential capacitance, even in dilute
solutions.

C. Conclusions
This article has presented the derivation of a free energy func-

tional for an electrolyte solution based on effective field theory. This
approach allows including coulombic correlations with a 1L expan-
sion, thus overcoming limitations of common MF approaches. The
two essential steps involve a transformation to a variational func-
tional for the electrostatic potential using an auxiliary charge and a
transformation to a variational functional for the electrolyte densi-
ties using auxiliary potentials. The key theoretical contribution is the
derived variational functional that separates into an ideal gas part
and two excess parts. One excess part is the common MF functional
and the other is a 1L–LDA correlation functional. The correlation
functional captures coulombic correlation effects of an electrolyte
solution. In this article, the correlation functional parameters are
calibrated using experimental electrolyte solution data.

FIG. 7. (a) The MF and the 1L–LDA model are compared with experimental capacitance data at 100 mM bulk concentration. (b) The 1L–LDA simulations are compared with
experimental values at three different bulk ion concentrations. The parameters used are shown in Table I. The insets show the electrode potential window (white region)
around the pzc, where the 1L–LDA is applicable; see Appendix A 5. All experimental curves are rescaled by the roughness factor (1.08) provided by Valette.62,71
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The 1L–LDA correlation functional correctly reproduces
experimental trends in dielectric permittivity and ionic activity coef-
ficient, which are known to be affected by coulombic correlation
effects.26,27 The 1L model contains solvent–solvent correlations that
affect the dielectric permittivity of bulk water. Furthermore, the 1L
model describes ion–solvent correlation effects and as such describes
solvation of ions in water that reduces the dielectric permittivity
as a function of ionic strength. Similarly, the 1L model includes
ion–ion correlations, which reduce the activity coefficient upon
increasing ionic strength. Embedded into an EDL functional, the
reduction of the activity coefficient at the interface that is induced
by ion–ion correlations increases the counterion density at a given
electrode potential. The 1L–LDA functional achieves significantly
improved agreement with experimental data, compared to the MF
prediction around the pzc. This agreement exists over a wide con-
centration range. In the future, the goal is to move beyond the
1L approximation by systematically including higher-order terms,
extending the applicability of the approach to higher concentra-
tions. Furthermore, the heuristic lattice gas model will be replaced
by a first-principles treatment of steric interactions similar to the
hard-sphere interaction in the primitive model.
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APPENDIX A: DETAILED DERIVATION OF THE 1L–LDA
FUNCTIONAL

The objective of this section is to derive the 1L–LDA cor-
relation functional for electrolyte solutions from first principles,
utilizing a statistical mechanics approach. Starting with the poten-
tial energy of the electrolyte solution, the system’s partition function
can be expressed. Through a Hubbard–Stratonovich transformation,
a functional integral representation is then obtained. Appendix A 2

presents a general derivation of a variational functional for the elec-
trostatic potential and electrolyte solution densities. Appendix A 3
utilizes the insights from Appendix A 2 to derive an explicit varia-
tional functional for electrolyte solutions. This functional comprises
the ideal gas functional, as described in Eq. (A60), the excess MF
functional, Eq. (A61), and, crucially, the newly derived correlation
functional in LDA, presented in Eq. (A62), which represents the key
scientific result of this paper. This allows investigating the influence
of coulombic correlations on the EDL in Sec. III.

1. Hubbard–Stratonovich transformation
Following Refs. 38 and 50, the potential energy of an elec-

trolyte solution under the influence of spatially dependent external
potentials vext

j (r) is given by

U =
1
2∫r,r′

ρ(r)V(r, r′)ρ(r′) + ∫
r
∑

j=a/c/s
vext

j (r)nj(r), (A1)

where ∫r is a shorthand notation for ∫ d3r and r is a three-
dimensional vector. The external potentials will be needed to
describe the interaction with the electrode subsystem in Sec. III. The
first term entails the Coulomb interaction,

V(r, r′) =
1

4πε0∣r − r′∣
, (A2)

with vacuum permittivity ε0 and electrolyte charge density ρ(r),
while the second term is the linear coupling of vext

j (r) to the local
densities nj(r) of anions (a), cations (c), and solvent (s), respectively.
The electrolyte consists of Na point-like anions with charge qa and
Nc cations with charge qc, dissolved in Ns solvent molecules with
dipole moment p⃗, giving a total charge density of

ρ(r) = ∑
i=a/c

qini(r) + ρs(r), (A3)

where the density of electrolyte particles is

nj(r) =
Nj

∑
k=1

δ(r − rj,k), j = a, c, s, (A4)

and the dipole charge density50 is

ρs(r) =
Ns

∑
k=1
(p⃗k ⋅ ∇)δ(r − rs,k). (A5)

Note that the dipole charge density is not identical to the dipole
density. The dipole-induced charge density is the divergence of the
dipole-induced polarization, e.g., Eq. (A5), while the dipole density
is given by Eq. (A4).

The fundamental quantity of a grand canonical system in
equilibrium is the grand potential,

Ωsol(μj) = −
1
β

log Zgc(μj), (A6)

which is a function of the chemical potentials μj of the particle
species j. The grand canonical partition function,

Zgc(μj) =∑
Na

∑
Nc

∑
Ns

λNa
a λNc

c λNs
s ⋅Zc(Na, Nc, Ns), (A7)
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where λj = exp(βμj) is the fugacity, can be obtained from the canon-
ical partition function Zc, which is the phase-space integral over
all possible electrolyte configurations weighted by their respective
Boltzmann factors,

Zc(Nj) = ∏
i=a/c

1
Ni!Λ3Ni

i

Ni

∏
k=1
∫

ri,k

×
1

Ns!Λ3Ns
s

Ns

∏
k=1
∫

rs,k
∫

dΩk

exp (−βU), (A8)

where β = 1/(kBT) is the inverse temperature and kB is the Boltz-
mann constant. The partition function is written as an integral over
all possible particle degrees of freedom. In this case, degrees of free-
dom include the positions rj,k of particles k of type j and the orienta-
tions dΩk of dipoles of solvent molecules. The factorial N j! takes care
of overcounting, while integration over momentum degrees of free-
dom yields the thermal wavelengths Λ3Nj

j . In general, this partition
sum is not amenable to being transformed into an exact solution.
However, in order to use approximation methods, following the
work by Podgornik,43 we rewrite the partition function as a func-
tional integral over an auxiliary field linearly coupled to the charge
densities. This can be achieved by Hubbard–Stratonovich (HS)
transformation.39 Starting from the Boltzmann factor, Eq. (A8),
we write

exp(−
β
2∫r,r′

ρ(r)V(r, r′)ρ(r′))

= ∫ Dψ ⋅ exp(−
β
2∫r,r′

ψ(r)V−1
(r, r′)ψ(r′)

− iβ∫
r
ψ(r) ⋅ ρ(r)), (A9)

where we have neglected an irrelevant constant, ∼ det (V−1
)

1/2. This
allows the canonical partition function to be expressed as

Zc(Nj) = ∫ Dψ exp( −
β
2∫r,r′

ψ(r)V−1
(r, r′)ψ(r′))

×∏
i=a/c

1
Ni!Λ3Ni

i

Ni

∏
k=1
∫

ri,k

1
Ns!Λ3Nk

s

Ns

∏
k=1
∫

rs,k

× ∫
dΩk

exp
⎛

⎝
−iβ∫

r
ψ(r)ρ(r) − β∫

r
∑

j=a/c/s
vext

j (r)nj(r)
⎞

⎠
.

(A10)

The rewritten form makes it possible to simplify the position and
orientation integrals since charge density appears only linearly in the
exponent. Note that the HS field ψ is strictly real. After inserting the
explicit form of the charge density [Eq. (A3)] into Eq. (A10), the
space integration in the exponent can be performed to yield

exp
⎛

⎝
−iβ
⎛

⎝

Ni

∑
i,k

qiψ(ri,k) +
Ns

∑
k

p⃗k ⋅ ∇ψ(rs,k)
⎞

⎠

⎞

⎠

× exp
⎛

⎝
+β

Nj

∑
j,k

vext
j (rj,k)

⎞

⎠
. (A11)

The terms in the product over N i and Ns can be rearranged to

∏
i=a/c

Ni

∏
k=1

1
Λ3

i
∫

ri,k

exp
⎛

⎝
−iβ

Ni

∑
i,k

qiψ(ri,k) − β
Ni

∑
i,k

vext
i (ri,k)

⎞

⎠

= ∏
i=a/c
(∫

ri

Λ−3
i exp (−iβqiψ(ri) − βvext

i (ri)))
Ni

, (A12)

Ns

∏
k=1

1
Λ3

s
∫

rk
∫

dΩk

exp(−iβ
Ns

∑
k

p⃗k ⋅ ∇ψ(ri,k) − β
Ns

∑
k

vext
s (rs,k))

= (∫
r
∫

dΩ
Λ−3

s exp (−iβp⃗ ⋅ ∇ψ(r) − βvext
s (r)))

Ns

. (A13)

Furthermore, the orientational integral, dΩk, in Eq. (A13) can be
evaluated by fixing the dipole strength to p and aligning the dipole
vector p⃗ with the z axis. In this case, the scalar product in Eq. (A13)
is written as p∣∇ψ(r)∣ cos (θ), where θ is the angle between p⃗ and
∇ψ(r). Performing the integration then gives

Zc(Nj) = ∫ Dψ exp(−
β
2∫r,r′

ψ(r)V−1
(r, r′)ψ(r′))

×∏
i=a/c

1
Ni!
(∫

ri

Λ−3
i exp (−iβqiψ(ri) − βvext

i (ri)))
Ni

×
1

Ns!
(∫

r
Λ−3

s e−βvext
s (r) sinh (ipβ∣∇ψ(r)∣)

ipβ∣∇ψ(r)∣
)

Ns

. (A14)

Inserting Eq. (A14) into Eq. (A6) and identifying the sum over par-
ticle numbers as the series expansion of the exponential function,
one gets

Zgc(μj) =∑
Na

∑
Nc

∑
Ns

λNa
a λNc

c λNs
s ⋅Zc[Na, Nc, Ns]

= ∫ Dψ exp(−
β
2∫r,r′

ψ(r)V−1
(r, r′)ψ(r′))

× exp
⎛

⎝
∫

r
∑

i=a/c
λiΛ−3

i e−βvext
i (r) exp (−iβqiψ(r))

+ ∫
r
λsΛ−3

s e−βvext
s (r) sinh (ipβ∣∇ψ(r)∣)

ipβ∣∇ψ(r)∣
⎞

⎠
. (A15)

Using the operator inverse of the Coulomb potential,

V−1
(r, r′) = −∇(ε0∇δ(r − r′)), (A16)

and assuming that ∇ψ vanishes at the boundary of the integration
domain, the grand canonical partition function can be written as a
functional integral over the HS field,

Zgc(μj) = ∫ Dψe−βS[ψ], (A17)

weighted by the exponential of the non-linear field-action,

S[ψ] = ∫
r

⎛

⎝

ε0

2
(∇ψ(r))2

− ∑
i=a/c

β−1λiΛ−3
i e−βvext

i (r)e−iqiβψ(r)

− β−1λsΛ−3
s e−βvext

s (r) sinh (ipβ∣∇ψ(r)∣)
ipβ∣∇ψ(r)∣

⎞

⎠
. (A18)
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Physical information can be extracted from Eq. (A17) by com-
puting functional averages. The expectation value is defined as the
functional mean with respect to the above probability distribution,

⟨. . .⟩ ≡
1

Zgc
∫ Dψ(. . .)e−βS[ψ]. (A19)

For instance, the electric potential distribution is obtained from the
functional integral in Eq. (A17) by

ϕ(r) ≡ i⟨ψ(r)⟩, (A20)

i.e., as the expectation value of the fluctuating field times the imag-
inary unit. It should be noted that the field ψ is real, as previously
stated. However, since the expectation value is calculated with
respect to a complex probability distribution, as defined in Eq. (A19),
the average value, ⟨ψ(r)⟩, is imaginary. The variable ϕ is the elec-
tric potential since it is the field configuration that exactly solves the
Poisson equation for the ensemble-averaged particle density,38

−∇(ε(r)∇ϕ) = ∑
i=a/c

qi⟨ni(r)⟩, (A21)

where ε(r) is the permittivity.

2. Transformation to a variational functional
The functional in Eq. (A17) is still impossible to solve exactly.

However, we are not interested in the value of the partition function.
We are interested in the value of physical quantities that can be com-
puted from Eq. (A17) utilizing functional averages. In this section,
we explain the necessary steps to derive a variational functional from
Eq. (A17), which, when minimized, yields the correct equilibrium
distributions. We want to derive a variational functional for electro-
static potential and electrolyte densities. Note that the derivation of
the density functional below is similar to the derivation of density
functionals in the field of classical fluids31 and follows the approach
originally developed for quantum mechanical systems.53,72

From now on, the explicit dependencies on μj are omitted.
The functional mean of the electrostatic potential, Eq. (A20), can be
computed from Eq. (A17) by introducing an auxiliary charge den-
sity ρaux, which couples linearly to ψ, so that Eq. (A17) becomes a
functional of ρaux,

Z̃gc[ρaux] = ∫ Dψe−βS[ψ]+iβ∫r ρaux(r)ψ(r). (A22)

The functional Ω̃sol = β−1 log Z̃gc has more degrees of freedom than
that in Eq. (A17) and is equal to it only when ρaux = 0. In this
article, the round brackets are used to denote the argument of func-
tions, while the square brackets are used to denote the argument
of functionals. Taking the functional derivative with respect to ρaux
allows calculating the electric potential, as defined in Eq. (A21), for a
given ρaux,

ϕ(r) = −
δΩ̃sol[ρaux]

δρaux(r)

=
1
β

1
Z̃gc

δZ̃gc

δρaux(r)
= i⟨ψ(r)⟩. (A23)

Note that the physical equilibrium potential ϕeq is obtained only for
ρaux = 0, i.e.,

ϕeq
(r) = −

δΩ̃sol[ρaux]

δρaux(r)
∣

ρaux =0
. (A24)

In a similar way, the average electrolyte density can be computed
by linearly coupling an auxiliary potential vaux

j (r) to the particle
density of type j. Physically, vaux

j (r) simply represents an additional
external potential, which can be interpreted as a variation of the
actual vext

j (r),

vext
j (r)→ vext

j (r) + vaux
j (r). (A25)

The action in Eq. (A18) including vaux
j has the form

S[ψ] = ∫
r

⎛

⎝

ε0

2
(∇ψ(r))2

− ∑
i=a/c

β−1Λ−3
i eβ(μi−vext

i (r)−vaux
i (r))

× e−iqiβψ(r) − β−1Λ−3
s eβ(μs−vext

s (r)−vaux
s (r))

×
sinh (ipβ∣∇ψ(r)∣)

ipβ∣∇ψ(r)∣
⎞

⎠
. (A26)

Thus, we have converted the partition function [Eq. (A7)] into
a functional of four auxiliary fields, i.e., three vaux

j (r) and one
ρaux(r). From this, we obtain the grand potential functional ,
Ω̃sol[vaux

j (r)ρaux(r)]. The ensemble averaged particle densities, for a
given vext

j (r) and vaux
j (r), can be computed by functional derivation

of the grand potential functional,

nj(r) =
δΩ̃sol[vaux

j (r), ρaux(r)]
δvaux

j (r)
, (A27)

= −
1
β

1
Z̃gc

δZ̃gc[vaux
j (r)(r), ρaux(r)]
δvaux

j (r)
, (A28)

where the equilibrium densities are obtained by setting vaux
j (r) = 0,

i.e.,

neq
j (r) =

δΩ̃sol[vaux
j (r), ρaux(r)]
δvaux

j (r)
∣

vaux
j (r)=0

. (A29)

In total, this yields four conjugated pairs,

ρaux(r)↔ ϕ(r), vaux
j (r)↔ nj(r) with j ∈ a, c, s, (A30)

of one physical quantity (ϕ, nj) and one auxiliary field (ρaux, vaux
j )

that are related through a functional derivative of the grand potential
functional.

We aim to develop a variational functional that will yield the
correct thermodynamic equilibrium density and potential distri-
butions by solving the Euler–Lagrange equations. This means that
finding the field configuration for which the functional derivative
of the variational functional is zero. To obtain a variational princi-
ple for ϕ(r) and nj(r), we use two Legendre transformations that
substitute the dependence of Ω̃sol[vaux

j (r), ρaux(r)] on vaux
j (r) and
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ρaux(r) by their conjugates, as in Eq. (A30). The variational solution
functional is given by

Ωsol[nj(r),ϕ(r)] = Ω̃sol[v
aux
j (r), ρaux(r)] + ∫

r
ρaux(r)ϕ(r)

− ∑
j=a/c/s

∫
r

vaux
j (r)nj(r), (A31)

where ϕ and ρaux are related by Eq. (A23) and nj(r) and vaux
j by

Eq. (A27). Recognizing that ρaux and vaux
j are functions of ϕ, the

functional in Eq. (A31) satisfies

δΩsol[nj(r),ϕ(r)]
δϕ(r)

= ρaux(r). (A32)

Since the physical electrostatic potential ϕeq
(r) [Eq. (A24)] corre-

sponds to ρaux = 0, we obtain

δΩsol[nj(r),ϕeq
(r)]

δϕ
= 0, (A33)

i.e., Ωsol is stationary at the physical (equilibrium) potential.
Analogously, Eq. (A31) satisfies

δΩsolnj(r), ϕ(r)]
δnj(r)

= −vaux
j (r). (A34)

This means that the variational derivative of Ωsol,

δΩsol[n
eq
j (r),ϕ(r)]
δnj(r)

= 0, (A35)

vanishes for neq
j (r), cf. Eq. (A29), which corresponds to vaux

j (r) = 0.
In summary, from a classical first-principles approach, we have

rigorously derived a functional Ωsol that is stationary with respect to
neq

j and the ϕeq,

δΩsol[nj(r),ϕeq
(r)]

δϕ(r)
= 0,

δΩsol[n
eq
j (r),ϕ(r)]
δnj(r)

= 0. (A36)

The variational equations given in Eq. (A36) result in differential
equations known as the Euler–Lagrange equations for ϕ and nj. We
denote the variational functional Ωsol[nj(r),ϕeq

(r)] by the same
symbol as the grand-potential function [Eq. (A6)] since evaluating
the functional at the physical equilibrium configurations, ϕeq and
neq

j , yields the value of the grand potential function at given μj,

Ωsol[n
eq
j (r),ϕ

eq
(r)] = Ωsol(μj), (A37)

where the μj dependence in the l.h.s. is not explicitly stated.

3. Derivation of the 1L–LDA functional
Thus far, no approximations have been used in the formalism.

This subsection explains the explicit calculation of Ωsol based on
two approximations. We split the two Legendre transformations in
Eq. (A31) into two steps: in Appendix A 3 1, we introduce the one
loop (1L) approximation to obtain an explicit form of the Legendre
transformation for the electrostatic potential. In Appendix A 3 2,
we perform the second Legendre transformation for the electrolyte

densities. Furthermore, a local-density approximation (LDA) is
applied to obtain an analytical expression for the correlation func-
tional. This allows finding a local free energy functional including
coulombic correlation effects for electrolyte solutions in the presence
of an external potential.

1. The one-loop approximation
The first Legendre transformation, Eq. (A31), results in a

variational functional solely for the electric potential,

Γ[vaux
j (r),ϕ(r)] = Ω̃sol[v

aux
j (r), ρaux(r)] + ∫

r
ϕ(r)ρaux(r). (A38)

To compute Γ, we insert Ωsol from Eq. (A6), including the auxiliary
fields, into Eq. (A38) and exponentiate both sides, leading to

e−βΓ[v
aux
j ,ϕ(r)]

= ∫ Dψ exp(−βS[ψ] + β∫
r
ρaux(r)(iψ(r) − ϕ(r))).

(A39)
Shifting the integral over all field configurations, ψ, to one over all
fluctuations, δψ, around the mean, ⟨ψ(r)⟩,

ψ(r) = ⟨ψ(r)⟩ + δψ(r), (A40)

yields

e−βΓ[v
aux
j ,ϕ(r)]

= ∫ Dδψ exp(−βS[i−1ϕ + δψ] + iβ∫
r
δψ(r)ρaux(r)).

(A41)
There are several different ways to approximate Γ at this point. When
fluctuations δψ are entirely neglected, implying that electrolyte
correlations are disregarded,

Γ[vaux
j ,ϕ(r)] = S[i−1ϕ(r)]. (A42)

Theories that neglect correlations are referred to as mean-field
(MF) theories, in which particle–particle interactions are replaced
by interactions with an average potential.50

If the action S is large, the functional integral, described by
Eq. (A41), can be approximated using the saddle-point approx-
imation, where the action is expanded around the saddle-point
configuration that satisfies

δS
δψ(r)

− i ρaux(r) = 0. (A43)

This method relies on an expansion parameter, υ, which is small and
serves as a pre-factor of the action. Following Netz,73 the action is
multiplied by 1/υ, which acts as our expansion parameter and helps
distinguish terms of different orders and is set to one in the end. In
Appendix A 5, we demonstrate that for the 1L–LDA functional, υ is
inversely proportional to the Debye length. Therefore, the expansion
becomes exact in the limit of infinite dilution, and the accuracy is
determined by the highest density in the system.

For the expansion, it is convenient to redefine δψ → υ−1/2δψ in
Eq. (A41). The expansion of S around i−1ϕ then reads

e−βΓ[v
aux
j ,ϕ(r)]

= ∫ Dδψ exp ( − υ−1βS[i−1ϕ]

− υ−1/2β∫
r
[

δS
δψ(r)

− i ρaux(r)]∣
ψ=i−1ϕ

δψ(r)
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−
β
2∫r,r′

δψ(r)
δ2S

δψ(r)δψ(r′)
∣

ψ=i−1ϕ

× δψ(r′) + O (υ1/2
)). (A44)

The first term in Eq. (A44) is the action evaluated at the expecta-
tion value of the HS field ⟨ψ(r)⟩ = i−1ϕ(r), and the second term
is the saddle point equation, which vanishes when evaluated at the
expansion point.74 The second order expansion in the third term is
called the 1L expansion. This designation comes from the fact that,
within a diagrammatic expansion of the action, the second order
term contains exactly all diagrams with one loop.42

Plugging Eq. (A43) into Eq. (A44) and neglecting all terms of
order O (υ1/2

) and higher, we arrive at

e−βΓ[v
aux
j ,ϕ(r)]

≈ e−υ
−1βS[i−1ϕ]

∫ Dδψ

× exp
⎛

⎝
−
β
2∫r,r′

δψ(r)
δ2S

δψ(r)δψ(r′)
∣

ψ=i−1ϕ
δψ(r′)

⎞

⎠

= e−υ
−1βS[i−1ϕ]⎛

⎝
detβ

δ2S
δψ(r)δψ(r′)

∣

ψ=i−1ϕ

⎞

⎠

−1/2

= exp
⎛

⎝
−υ−1βS[i−1ϕ] −

1
2

tr log β
δ2S

δψ(r)δψ(r′)
∣

ψ=i−1ϕ

⎞

⎠
.

(A45)

Here, a general expression for a Gaussian functional integral in
terms of the determinant of the kernel was used,38 neglecting an
irrelevant constant factor. By re-exponentiating the determinant and
using the matrix identity log(det(A)) = tr(log(A)), one arrives at
the final expression. A comparison of the left and right sides of
Eq. (A45) gives the result for Γ in the 1L approximation,

Γ[vaux
j ,ϕ(r)] = S[i−1ϕ] +

υ
2β

tr log βG−1, (A46)

with

G−1
(r, r′) =

δ2S
δψ(r)δψ(r′)

∣

ψ=i−1ϕ
. (A47)

The first term on the r.h.s. in Eq. (A46), evaluated at i−1ϕ, gives

S[i−1ϕ] = ∫
r
−
ε0

2
(∇ϕ)2

− ∑
i=a/c

β−1eβ(μi−vext
i (r)−vaux

i (r))Λ−3
i e−qiβϕ(r)

− β−1eβ(μs−vext
s (r)−vaux

s (r))Λ−3
s

sinh (pβ∣∇ϕ(r)∣)
pβ∣∇ϕ(r)∣

. (A48)

The second term in Eq. (A46) contains Eq. (A47), which is computed
in Appendix B 1 and yields

G−1
(r, r′) = −∇r′(εG(r′)∇r′δ(r − r′))

+ ∑
i=a/c

q2
i βλiΛ−3

i e−qiβϕ(r′)δ(r − r′), (A49)

with

εG(r) = ε0 + λsΛ−3
s p2β

sinh (pβ∣∇ϕ∣)
pβ∣∇ϕ∣

(L
2
+L

′
), (A50)

where, omitting the argument, L ≡ L (u) = coth (u) − 1/u and
L ′ ≡ L ′(u) are the Langevin function and its derivative, respec-
tively, and u = pβ∣∇ϕ∣. Throughout the paper, it is not necessary
to determine the value of the tr log expression in Eq. (A46), which
depends on G−1. In any instance, knowledge of G will suffice to com-
pute all quantities, cf. Eqs. (A56) and (A57). If one inserts Eq. (A49)
into the definition for the G,

∫
r′′

G−1
(r, r′′)G(r′′, r′) = δ(r − r′), (A51)

one gets

−∇r′(εG(r′)∇r′G(r, r′))

+ ∑
i=a/c

q2
i βλiΛ−3

i e−qiβϕ(r′)G(r, r′) = δ(r − r′). (A52)

Note that for p = 0, which means that the solvent is apolar, G−1

reduces to the differential operator whose solution is a screened
Coulomb potential. Thus, G entails screening. G describes the elec-
trostatic correlations in the system and is therefore also referred to
as the correlation function.

We now perform the second Legendre transformation in
Eq. (A31) to obtain a variational functional of both the electrostatic
potential and the electrolyte densities. To this end, the expression for
the densities, Eq. (A27), must be inverted to a function of vaux

j and
substituted into

Ωsol[nj ,ϕ] = Γ[vaux
j ,ϕ] − ∑

j=a,c,s
∫

r
vaux

j (r)nj(r). (A53)

For details regarding the derivation of vaux
j , we refer the reader to

Appendix B 2. The results for vaux
j as a function of nj are

vaux
i (r) = μi − μref

i − β
−1 log(

ni(r)/nref
i

li(r)/lref
i
)

− qiϕ(r) − vext
i (r), (A54)

vaux
s (r) = μs − μref

s − β
−1 log(

ns(r)/nref
s

ls(r)/lref
s
)

+ β−1 log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
) − vext

s (r). (A55)

For practical calculations, we introduced reference states with cor-
responding reference chemical potentials, denoted as μref

j , where the
electrostatic potential is zero and the density is constant and equal
to an arbitrarily chosen reference value. In the third terms on the
right hand sides of Eqs. (A54) and (A55), densities are rescaled by
dimensionless parameters, which are given as follows:

li(r) ≡ 1 − υ
βq2

i

2
G(r, r), (A56)

ls(r) ≡ 1 + υ
βp2

2
(L

2
+L

′
)∇

2G(r, r). (A57)
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These parameters encapsulate the corrections at the level of the
1L expansion and depend primarily on the equal-point correlation
function. Thus, the introduction of li and ls facilitates the interpre-
tation of correlation effects using a single local parameter for each
particle species depending on the equal-point correlation function
G(r, r) for ions and the Laplacian of the equal-point correlation
function ∇2G(r, r) for the solvent. The way how the correlation
parameters lj/lref

j enter Eqs. (A54) and (A55) shows that lj/lref
j can

be physically interpreted as the inverse of activity coefficients, cf.
Eqs. (A54) and (A55), as discussed in more detail in Appendix A 4 2.
Finally, the fourth terms in Eqs. (A54) and (A55) include the
conventional MF coupling to the electric potential.75

The expressions for vaux
j , given in Eqs. (A54) and (A55),

inserted into the Legendre transformation in Eq. (A31), yield

Ωsol[nj(r),ϕ(r)] = Fsol[nj(r),ϕ(r)] − ∑
j=a/c/s

μj∫
r

nj(r), (A58)

where Fsol is the free-energy solution functional of nj and ϕ,
including the external potential vext

j ,

Fsol[nj(r),ϕ(r)] = F
id
sol +F

mf
sol +F

corr,1L
sol +∑

j
∫

r
vext

j (r)nj(r).

(A59)
The free energy functional of Eq. (A59) splits into universal func-
tionals of nj and ϕ but is independent of vext

j . This is not a surprising
result since the existence of a universal functional, independent of
any external potential, is a central result from classical but also
quantum DFT.29,54 Here, F id

sol is the ideal gas functional,

F
id
sol = ∫

r
∑

j
β−1nj(r)(log (nj(r)/nref

j ) − 1) + ∫
r
∑

j
μref

j nj(r).

(A60)
Furthermore, we find an excess part that describes interactions
between particles. The latter is further split into the usual excess MF
functional

F
mf
sol = ∫

r
(−

ε0

2
(∇ϕ)2

+∑
i

ni(r)qiϕ(r)

− ns(r)β−1 log(
sinh (pβ∣∇ϕ∣)

pβ∣∇ϕ∣
)) (A61)

and a novel 1L correlation functional

F
corr,1L
sol = ∫

r
∑

j
nj(r)εcorr,j(r) +

υ
2β

tr log βG−1. (A62)

The first term on the r.h.s. of Eq. (A62) is a functional contribution
of the electrolyte densities of the form

εcorr,j(r) = −β−1
(log (lj(r)/lref

j ) +
1

lj(r)
− 1). (A63)

The second term on the r.h.s. of Eq. (A62) is a functional
contribution of the electric potential.

The expressions for lj, Eqs. (A56) and (A57), reveal that the lj
approach a value of one when correlation effects are small. In this
limit, Fsol reduces to the MF expression56 as expected.

The differential equation for the correlation function,
Eq. (A52), written with electrolyte densities, reads

−∇r′(εG(r′)∇r′G(r, r′)) + ∑
i=a/c

q2
i βni(r)G(r, r′) = δ(r − r′),

(A64)

with a permittivity for G,

εG(r) = ε0 + p2βns(r)(L 2
+L

′
). (A65)

Note that, so far, the only approximation employed was the
1L expansion. The free energy functional in Eq. (A59) is exact
up to O (υ).

2. The local-density-approximation
In the presence of arbitrary external potentials vext, where den-

sities are non-uniform, the equal point correlation function, given in
Eqs. (A56) and (A57), cannot be determined analytically as a func-
tion of local densities. For instance, at a metal–electrolyte interface,
the fields are spatially dependent, and the solution to Eq. (A64) must
be obtained self-consistently in conjunction with the variational
Eq. (A36).

We opt for a local-density approximation (LDA), where we
derive G and hence lj assuming constant fields. The correlation func-
tion is then only a function of the distance G(r, r′) = G(r − r′) and
can be obtained analytically. Suppressing the spatial dependence of
the densities in Eq. (A64), the differential equation reads

(−∇
2
r′ + λ

−2
D )G(r − r′) =

1
εG
δ(r − r′), (A66)

which is solved by

G(r − r′) =
1

4πεG

e∣r−r′ ∣/λD

∣r − r′∣
, (A67)

where

λD =

√ εG

β∑i=a/c q2
i ni

(A68)

is the Debye length for G containing the correlation permittivity εG,
given in Eq. (A65).

Using the LDA, we avoid the self-consistent solution of
Eq. (A64) in an external potential but only account for bulk
electrolyte correlation effects. This simplification is similar to the
assumption in electronic DFT where the local density functional is
derived from the homogeneous electron gas.53,54,72

The correlation parameters, Eqs. (A56) and (A57), inside of the
correlation functional in Eq. (A62), depend on the equal-point cor-
relation function, which diverges at small distances, formally known
as ultraviolet divergence.42 This is a typical problem of point-charge
models, arising from the fact that the electrical energy of two charged
particles diverges when they can come arbitrarily close to each other.

For this purpose, we introduce two short distance cutoffs in the
computation of the equal point correlation function in Eqs. (B20)
and (B22): ai for the computation of li in Eq. (A56) and as for the
computation of ls in Eq. (A57). It will become clear, in Sec. IV, that ai
is related to coulombic screening, while as is related to the dielectric
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properties of the electrolyte. Furthermore, it will be discussed how
these parameters can be determined from experimental data. Details
of the derivation of the correlation parameters in LDA are presented
in Appendix B 3. We obtain

li(r) = 1 − υ
βq2

i

4π2εG(r)
(

2π
ai
−

1
λD(r)

arctan(2π
λD(r)

ai
)), (A69)

ls(r) = 1 − υ
βp2

4π2εG(r)
(L

2
+L

′
)(

8π3

3a3
s
−

2π
λD(r)2as

+
1

λD(r)3 arctan(2π
λD(r)

as
)), (A70)

where we restored the spatial dependence of εG(r) and λD(r) given
in Eqs. (A65) and (A68). The correlation functional described in
Eq. (A62), combined with the local density approximation used
in Eqs. (A69) and (A70), is referred to as the 1L–LDA functional,
denoted as F corr,1L−LDA

sol .

4. Functional derivatives of the 1L–LDA functional
For practical purposes, functional derivatives of the LDA corre-

lation functional are required. The correlation functional alters the
Euler–Lagrange equation for densities by introducing an additional
correlation potential. Simultaneously, the Euler–Lagrange equation
for the electrostatic potential is affected by a correlation-induced
charge density, which can be integrated into a redefined permittivity.

1. The LDA correlation charge density
The variational equation, Eq. (A36), for ϕ yields a Poisson-

type differential equation for the electrostatic potential. According
to Eq. (A59), we need to compute three functional derivatives. The
ideal gas functional, F id

sol, does not depend on ϕ,

δF id
sol

δϕ(r)
= 0. (A71)

The functional derivative of the MF excess functional yields

δFmf
sol

δϕ(r)
=∑

i
qini(r) −∇ ⋅ (−ε0∇ϕ(r) −

nsp
∣∇ϕ∣

L (pβ∣∇ϕ∣)∇ϕ(r)).

(A72)
The functional derivative of the correlation functional is compli-
cated by the dependence of lj on ∇ϕ. Details for the functional
derivative are presented in Appendix B 4, yielding

δF corr,1L−LDA
sol
δϕ(r)

=∇ ⋅ [
ns(r)p
∣∇ϕ(r)∣

(L 3
+3L L ′+L ′′)

L2
+L ′

(1− ls(r))∇ϕ(r)].

(A73)
Inserting Eqs. (A71)–(A73) into Eq. (A36) yields a Poisson equation,
which can be written such that the 1L–LDA functional contributes
with an effective correlation charge density on the r.h.s,

−∇(εMF
(r)∇ϕ(r)) =∑

i
qini(r) +∇ ⋅ [

ns(r)p
∣∇ϕ(r)∣

×
(L3
+ 3L L ′ +L ′′)

L 2
+L ′

(1 − ls(r))∇ϕ(r)],

(A74)

with MF permittivity

εMF
(r) = ε0 +

nsp
∣∇ϕ∣

L (pβ∣∇ϕ∣). (A75)

Alternatively, the correlation-induced charge density can be incor-
porated into the permittivity so that the Poisson equation takes the
simple form

−∇(ε1L
(r)∇ϕ(r)) =∑

i
qini(r), (A76)

with the 1L permittivity

ε1L
(r) = ε0 +

nsp
∣∇ϕ∣
(L +

(L 3
+ 3L L ′ +L ′′)

L 2
+L ′

(1 − ls)). (A77)

2. The LDA correlation potential
The Euler–Lagrange equations for electrolyte ion and solvent

densities, cf. Eq. (A36), yield Boltzmann-like relations. Functional
differentiation of F id

sol with respect to the densities gives

δF id
sol

δnj(r)
= β−1 log (nj(r)/nref

j ) + μ
ref
j . (A78)

The functional derivatives of the MF excess functional with respect
to the densities depend on the type of particles since ions interact dif-
ferently with the electrostatic potential than solvent molecules. For
ions, the functional derivative yields

δFmf
sol

δni(r)
= qiϕ(r), (A79)

whereas the derivative for the solvent density yields

δFmf
sol

δns(r)
= −β−1 log(

sinh (pβ∣∇ϕ∣)
pβ∣∇ϕ∣

). (A80)

The functional derivative of the LDA correlation functional is more
difficult to calculate due to the dependence of lj on nj, which is
presented in Appendix B 4. Neglecting higher orders than υ, the
functional derivative gives

δF corr,1L−LDA
sol
δnj(r)

≈ −e0ϕcorr
j (r), (A81)

with a correlation potential,

ϕcorr
j (r) = (βe0)

−1 log (lj(r)/lref
j ), (A82)

for both ion and solvent species. The overall Euler–Lagrange
equation for the ion densities, Eq. (A36), resolving for nj, yields
Boltzmann-like relations,

ni(r) = nref
i exp (β((μi − μref

i − vext
i (r)) − qiϕ(r) + e0ϕcorr

i (r))),
(A83)

= li(r)/lref
i nref

i exp (β(μi − μref
i ) − βqiϕ(r) − βvext

i (r)),
(A84)
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that produce an additional pre-factor li(r)/lref
i to the MF result.

A similar calculation for the solvent density yields

ns(r) = nref
s exp(β(μs − μref

s ) − βvext
s (r)

+ log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
) + βe0ϕcorr

s (r)), (A85)

= ls(r)/lref
s nref

s exp(β(μs − μref
s )

+ log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
) − βvext

s (r)). (A86)

It is evident that the LDA correlation functional introduces an
activity coefficient for particle species j,

γj = (lj(r)/lref
j )
−1, (A87)

which means that the correlation potential can be rewritten as

ϕcorr
j (r) = −(βe0)

−1 log (γj). (A88)

In bulk electrolytes, the activity coefficient is typically smaller than
one,27 indicating that ϕcorr

j > 0 and, consequently, the density (for
the same μj) is larger compared to the MF case where γj = 1
and ϕcorr

j = 0.
In summary, the variational derivative of the 1L LDA correla-

tion functional with respect to ϕ corresponds to a correlation charge
density, Eq. (A74), that can be integrated into a redefined 1L per-
mittivity, Eq. (A77). In addition, the variational derivative of the 1L
LDA correlation functional with respect to nj represents a correla-
tion potential, Eq. (A88), that depends solely on the species’ local
activity coefficients, γj, quantifying deviations from MF behavior.

The derivation of the solution functional, Eq. (A59), and its cor-
responding variational derivatives, Eqs. (A73) and (A81), constitute
the primary technical result of this article. We have accomplished a
transition from the thermodynamic partition function, Eq. (A17),
that describes an electrolyte solution in an external potential to
a variational grand potential functional for particle densities and
electrostatic potential, Eq. (A59). The functional, when minimized,
yields the thermodynamic equilibrium distributions of electrolyte
densities and electric potential. We have derived a correlation
functional, Eq. (A62), that integrates coulombic correlation effects
within the 1L and LDA. Via its functional derivatives, the 1L–LDA
functional influences the Euler–Lagrange equations for the elec-
tric potential and electrolyte densities by introducing an additional
correlation charge density and correlation potentials, respectively.

5. Applicability of the 1L–LDA functional
Derivation of the 1L–LDA functional involves two approxima-

tions. The key approximation in this article is the one-loop expan-
sion, which allows accounting for coulombic correlation effects
beyond the mean-field level. For an inhomogeneous system, i.e.,
in the presence of an external potential, the highest local ion con-
centration (density) determines the applicability limit of the 1L

approximation. To assess the applicability of the 1L approximation,
we evaluate the 1L approximation for a bulk electrolyte system, for
which the LDA is exact. To derive an analytical expression for the
upper bound of the density, the solvent is treated implicitly as a
dielectric background ε. By re-scaling in Eq. (A18),

ψ →
1

βze0
ψ̃, r → λD r̃, (A89)

the action in Eq. (A17) becomes dimensionless (and independent of
physical constants) and proportional to

υ−1
=
λD

λB
, (A90)

where λB = (ze0)
2
/(4πεkBT) is the Bjerrum length. This means that

the value of the partition function in Eq. (A17) is governed only
by υ. As υ becomes small, i.e., for low ion concentrations and
large dielectric permittivity, the pre-factor of S becomes large and
the 1L approximation becomes more accurate.76 This defines our
expansion parameter introduced in Eq. (A44).

In case of a charged metal–electrolyte interface, the highest ion
concentration is achieved closest to the metal surface. In the classical
Gouy–Chapman result,77 the sum of cation and anion densities at
the metal surface as a function of the surface charge density, σM , is
given by

nc + na ≈
βσ2

M

2ε
. (A91)

Substituting Eq. (A91) into the Debye length [Eq. (A68)] gives

λD =
√

2
ε

βze0σM
. (A92)

Inserting Eq. (A92) into Eq. (A90) yields the expansion parameter as
a function of σM ,

υ =
1
√

2
β2
(ze0)

3

4πε2 σM. (A93)

For given σM , we can thus estimate the applicability of the 1L expan-
sion. Identifying the value of υ at which the 1L approximation
becomes quantitatively inaccurate requires numerical methods, such
as Monte Carlo simulations of the exact partition function.38 For
instance, Netz and Orland38 argued that the predictions of the 1L
expansion become unphysical when υ > 12, although the 1L expan-
sion can be quantitatively incorrect even for smaller values. For
a 1:1 electrolyte, we set the upper bound conservatively to υ = 1,
which gives an upper limit ∣σM ∣ ≈ 4 μC cm−2 or an ionic strength
of Ic = 200 mM. We thus consider the 1L–LDA functional to be
applicable around the potential of zero charge (pzc) as long as the
electrode surface charge is smaller than 4 μC cm−2.

6. Coupling the electrolyte functional to other
variational functional models

For the description of charged metal–electrolyte interfaces, the
electrolyte model must be combined with a model for the metal
electrode and surface charge. This is often achieved by heuristically
adding up the different free energy contributions in a combined
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free energy functional.15 In such hybrid models, however, individ-
ual contributions from electrode and electrolyte subsystems and
their interaction are not derived together from first principles. It is
therefore not clear a priori how the variational principle for the indi-
vidual subsystems translates to the level of the combined free energy
functional. The variational functional, as expressed in Eq. (A59),
was derived under the presence of an external potential vext

j for the
electrolyte species. It will be shown in this section that the exter-
nal potential naturally emerges from the coupling between different
subsystems in a combined variational functional.

To get to this point, we define a combined grand potential
functional as

Ωtot = Fsol +Fext − ∑
j=a,c,s
∫

r
μjnj(r), (A94)

which, compared to Eq. (A31), has no external potentials but an
additional free energy contribution, Fext. In classical density func-
tional theory, external potentials and free energy functionals are
used, for example, to model the influence of external charge dis-
tributions on the underlying statistical system. In this work, the
external potential is used to model an explicitly considered addi-
tional subsystem, e.g., the metal electrode and its interaction with
the electrolyte.

If we compare the variational derivatives of Eqs. (A31) and
(A94), evaluated at the equilibrium density n0

j corresponding to Fsol

for vext
j = 0, we find

δΩtot

δnj(r)
[n0

j (r)] =
δFext

δnj(r)
, (A95)

δΩsol

δnj(r)
[n0

j (r)] = vext
j (r). (A96)

By comparing Eqs. (A95) and (A96), we arrive at the conclusion that
any external functional acts upon the underlying statistical system in
the same way as an external potential.

The external functional represents the metal electrode and its
interaction with the electrolyte,

Fext = Ωel[ne,μe] +Fel−sol[ne, nj], (A97)

where Ωel is the electrode grand-potential functional that depends
on the electron density, ne, and the electron chemical potential, μe,
while being independent of the electrolyte densities. In the following,
we choose a simple MF coupling

Fel−sol = ∫
r,r′

ρsol(r)ρel(r′)
4πε0∣r − r′∣

(A98)

between the electrode charge ρel(r) = (ρcore(r) − e0ne(r)), where
ρcore represents the atomic core charge density of the metal, and the
solution charge density

ρsol(r) = ∑
i=a/c

qini(r) +∇ε(r) ⋅ ∇ϕ(r), (A99)

which consists of the charge due to ions and the bound charge due
to the spatially dependent permittivity. It should be emphasized that

this interaction functional between electrons and electrolyte corre-
sponds to a MF coupling, i.e., it does not account for correlation
effects between the metal and electrolyte.78

According to Eq. (A95), the external potential, which acts upon
ions, is thus given by

vext
i (r) = qi∫

r′
ρel(r′)

4πε0∣r − r′∣
= qiϕel. (A100)

Consequently, the external potential acting on species i is the
coulombic potential ϕel caused by ρel. As shown in Appendix A 4, the
Euler–Lagrange equation for ni in the presence of such an external
potential reads

ni(r) = nref
i exp (β((μi(r) − μref

i ) − qiϕtot(r) + e0ϕcorr
i (r))),

(A101)
where the total electrostatic potential combines the contributions
from the electrode and electrolyte,

ϕtot(r) = ϕ(r) + ϕel(r). (A102)

By construction, ϕtot satisfies

∇(ε0∇ϕtot(r)) = ∇(ε0∇ϕ(r)) +∇(ε0∇ϕel). (A103)

Using the second term on the r.h.s,

∇(ε0∇ϕel(r)) = ∇(ε0∇(∫
r′

ρel(r′)
4πε0∣r − r′∣

))

= ρel(r), (A104)

alongside the Poisson equation for ϕ, as shown in Eq. (A72), we find
the Poisson equation for ϕtot,

−∇(ε0∇ϕtot(r)) = ρel + ρsol. (A105)

Hence, as expected, the Poisson equation for ϕtot includes the total
charge density of the electrode–electrolyte system. We note that,
vice versa, the electrolyte functional can be interpreted as an exter-
nal potential for the metal–electronic subsystem leading to the same
Poisson equation for ϕtot. Accordingly, the electrostatic interactions
within and across the entire system can be described by one common
electrostatic potential ϕtot, which, for the sake of simplicity, will be
denoted as ϕ in the following.

APPENDIX B: CALCULATIONS FOR THE 1L–LDA
CORRELATION FUNCTIONAL
1. Calculation of the second variation in Eq. (26)

The first variational derivative of the action with respect to the
field ψ is

δS[ψ]
δψ(r)

= ∑
i=a/c

iqiλiΛ−3
i e−iqiβψ(r)

− (ε0 + λsΛ−3
s p2β

sinh (u)
u

(L
2
(u) +L

′
(u)))∇2ψ(r),

(B1)

where, for convenience, we repeat omitting the argument,
L ≡ L (u) and L ′ ≡ L ′(u) are the Langevin function and its
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derivative, respectively, and u = pβ∣∇ψ∣. The second variation can
be obtained using the functional derivative on Eq. (B1). Some useful
relations in these calculations are

d
dx
(

sinh (u(x))
u(x)

) =
sinh (u)

u
L (u)

du
dx

,

∂

∂∇ψ
∣∇ψ∣ =

∇ψ
∣∇ψ∣

,

∇∣∇ψ∣ =
∇ψ
∣∇ψ∣
∇

2ψ, and ∇
∇ψ
∣∇ψ∣

= 0.

(B2)

To obtain the second variational derivative, one can rewrite the first
variation, Eq. (B1), as a functional by integrating the first variation
times a delta function,

M[ψ] ≡ ∫
r′

M (ψ,∇ψ,∇2ψ)

= ∫
r′

⎛

⎝
∑

i=a/c
iqiλiΛ−3

i e−iqiβψ(r′) − (ε0 + λsΛ−3
s p2β

×
sinh (u′)

u′
(L

2
(u′) +L

′
(u′)))∇2ψ(r′)

⎞

⎠
δ(r − r′),

(B3)

where u′ denotes pβ∣∇ϕ(r′)∣, and for clarity, ∇ψ(r) ≡ ∇rψ(r).
Then, the second variation is

δ2S
δψ(r′)δψ(r)

=
∂M

∂ψ(r′)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
(1)

−∇
∂M

∂∇ψ(r′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

+∇
2 ∂M

∂∇2ψ(r′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(3)

, (B4)

where

(1) =
∂M

∂ψ(r′)
= ∑

i=a/c
q2

i βλiΛ−3
i e−iqiβψ(r′)δ(r − r′), (B5)

(2) = ∇
∂M

∂∇ψ(r′)

= −iλsΛ−3
s p3β2

∇[∇
2ψ(r′)δ(r − r′)

sinh (u′)
u′

×
∇ψ
∣∇ψ∣
(L

3
+ 3LL

′
+L

′′
)], (B6)

(3) = ∇2
r′

∂M

∂∇2ψ(r′)

= −ε0∇
2
r′δ(r − r′) − iλsΛ−3

s p3β2
∇r′

× [∇
2ψδ(r − r′)

sinh (u′)
u′

∇ψ
∣∇ψ∣
(L

3
+ 3LL

′
+L

′′
)]

− λsΛ−3
s p2β∇r′(

sinh (u′)
u′

(L
2
+L

′
)∇r′δ(r − r′)). (B7)

Note that we did not evaluate the last gradient derivative in
(2) and (3) to show that the second term in (3) cancels exactly with
the (2) term. To evaluate the second variation, at the saddle point,

some useful identities can be used, where one needs the properties
of the Langevin function and its derivatives,

L (ip∣∇ψ∣) = −L (p∣∇ϕ∣), L
′
(ip∣∇ψ∣) = L

′
(p∣∇ϕ∣),

L
′′
(ip∣∇ψ∣) = −L ′′(p∣∇ϕ∣).

(B8)

Then, one arrives at

δ2S
δψ(r)δψ(r′)

= −∇r′(ε(r
′
)∇r′δ(r − r′))

+ ∑
i=a/c

q2
i βλiΛ−3

i e−iqiβψ(r′)δ(r − r′), (B9)

with

ε(r′) = ε0 + λsΛ−3
s p2β

sinh (u′)
u′

(L
2
(u′) +L

′
(u′)). (B10)

2. Calculation of the chemical potentials
in Eqs. (A54) and (A55)

Here, we introduce a new three dimensional vector x as an
argument because the variables r and r′ are needed for the argument
of the correlation function. The particle density for the ions can be
calculated as

ni(x) = −
∂Γ

∂vaux
i (x)

= −
∂S[i−1ϕ]
∂vaux

i (x)
−

υ
2β

trG
∂G−1

∂vaux
i (x)

, (B11)

where the MF contribution is

∂S[i−1ϕ]
∂vaux

i (x)
= −eβμi(x)Λ−3

i e−qiβϕ(x), (B12)

and the 1L contribution is

∂G−1
(r, r′)

∂vaux
i (x)

= q2
i β

2eβμi(r′)Λ−3
i e−qiβϕ(r′)δ(x − r′)δ(r − r′). (B13)

Together, this gives the particle density,

ni(x) = eβμi(x)Λ−3
i e−qiβϕ(x) − υ

q2
i βΛ−3

i

2 ∫
r,r′

G(r, r′)eβμi(r′)

× e−qiβϕ(r′)δ(x − r′)δ(r − r′)

= eβμi(x)Λ−3
i e−qiβϕ(x) − υ

q2
i βΛ−3

i

2
eβμi(x)e−qiβϕ(x)G(x, x)

= Λ−3
i eβμi(x)e−qiβϕ(x)(1 − υβ

q2
i

2
G(x, x)). (B14)

Inserted into Eq. (A27) and inverted gives the chemical potential,

μi = β−1 log
ni(r)Λ3

i

li(r)
+ qiϕ(r) + vaux

i (r) + vext
i (r), (B15)

where we define the correlation parameter,

li(r) ≡ 1 − υβ
q2

i

2
G(r, r). (B16)
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A similar calculation for the solvent molecules gives

μs = β−1 log(
ns(r)Λ3

s

ls(r)
)

− β−1 log(
sinh (pβ∣∇ϕ(r)∣)

pβ∣∇ϕ(r)∣
) + vaux

s (r) + vext
s (r), (B17)

with

ls(r) ≡ 1 + υ
βp2

2
(L

2
+L

′
)∇

2G(r, r). (B18)

The issue with Eqs. (B15) and (B17) is that the parameter lj can
potentially become negative, making the logarithm undefined. This
problem arises because a reference state for measuring the chemi-
cal potential has not been established. We define a reference state
chemical potential that belongs to a state of constant density nref

j

and correlation parameter lref
j , albeit with zero electrostatic potential.

Adding and subtracting

μref
j = β

−1 log
⎛

⎝

nref
j Λ3

j

lref
j

⎞

⎠
(B19)

in Eqs. (B15) and (B17) yield Eqs. (A54) and (A55), where only lj/lref
j

appears in the argument of the logarithm.

3. The local-density-approximation for the correlation
parameters Eqs. (28) and (29)

Due to the anisotropy of the metal–electrolyte interface, the
correlation function depends not only on the distance, ∣r − r′∣, but
explicitly on the two vectors r and r′.73,79 This work opts for a local-
density-approximation (LDA), which neglects the spatial depen-
dence of the fields in the differential equation, Eq. (A64), to obtain
an analytical result for G(r − r). Only after obtaining G(r − r) is the
spatial dependence of the fields restored. This approach is similar
to the LDA of the exchange–correlation functional in DFT, where
the inhomogeneous gas functional is derived assuming a uniform
electron gas.53,54

The correlation function, Eq. (A64), in LDA is given by
Eq. (A66). The equal-point correlation function and its Laplacian
can be obtained by Fourier transforming Eq. (A66) and defining

G(r, r) = ∫
∣k∣<kmax

d3k
(2π)3

1
ε(r)

⋅
1

k2
+ λ−2

D
, (B20)

=
1

2π2ε(r)
(

2π
ai
−

1
λD

arctan(2π
λD

ai
)), (B21)

and

∇
2G(r, r) = −∫

∣k∣<kmax

d3k
(2π)3 k2G̃(k), (B22)

= −
1

2π2ε(r)
(

8π3

3a3
s
−

2π
λ2

Das
+

1
λ3

D
arctan(2π

λD

as
)), (B23)

where a maximum wavelength cutoff kmax was introduced to fix the
divergence of the correlation function at the same argument. Cru-
cially, the cutoff for G (ai) is different from the cutoff of ∇2G (as).

This is necessary in order to reproduce experimental data of dielec-
tric permittivity and activity coefficient, cf. Sec. IV A. Inserting the
results into the correlation parameters, Eqs. (B16) and (B18), gives
Eqs. (A69) and (A70).

4. Calculation of the functional derivatives
in Appendix A 4

In this subsection, we discuss the computation of the varia-
tional derivatives of the LDA correlation functional, Eq. (A62), with
respect to ϕ and nj.

1. Functional derivative of the 1L–LDA functional
with respect to ϕ in Eq. (A73)

In evaluating the functional derivative with respect to ϕ, it is
important to recognize that the parameters lj themselves depend
on∇ϕ,

∂li
∂∇ϕ

=
3
2

p3β2ns

ε(r)∣∇ϕ∣
(2LL

′
+L

′′
)(1 − li)∇ϕ, (B24)

∂ls
∂∇ϕ

=
βp
∣∇ϕ∣

(2LL ′ +L ′′)

(L 2
+L ′)

(ls − 1)∇ϕ. (B25)

This enables us to compute

δF corr,1L−LDA
sol
δϕ(r)

=
δ

δϕ(r)∫r
∑

j
nj(r)εcorr

j (r)

+
δ

δϕ(r)
υ

2β
tr log βG−1

[ϕ(r)]. (B26)

The first part on the r.h.s gives

δ
δϕ(r)∫r′

∑
j

nj(r′)εcorr
j (r

′
)

= ∇[−
3
2

p3βns

ε(r)∣∇ϕ∣
(2L L

′
+L

′′
)∑

i
ni
(1 − li)2

l2
i

+
nsp
∣∇ϕ∣

⋅
(2LL ′ +L ′′)

(L 2
+L ′)

(1 − ls)2

l2
s
)∇ϕ]. (B27)

Note that the two terms ∼ (1−lj)2

l2j
are both ∼O (υ2

) and can therefore

be neglected. Both terms result from the explicit dependence of the
correlation energy, εcorr

j , on the electric field. To compute the second
part on the r.h.s. of Eq. (B26), we need the variational derivative of
the inverse correlation function. For that purpose, we rewrite the
correlation function as a functional

G−1
(r, r′) = ∫

x
dx M (x, r, r′), (B28)

with

M (x, r, r′) =
⎛

⎝
∑

i=a/c
q2

i βni(x)δ(r − x) − p3β2ns
∇ϕ
∣∇ϕ∣
∇

2ϕ

× (L
3
+LL

′
+ 2LL

′
+L

′′
)∇xδ(r − x)

− ε(x)∇2
xδ(r − x))δ(x − r′), (B29)
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which lets us write the functional derivative as

δG−1

δϕ(x)
=

∂M

∂ϕ(x)
−∇

∂M

∂∇ϕ(x)
+∇

2 ∂M

∂∇2ϕ(x)
, (B30)

which yields

δG−1

δϕ(x)
= −∇(

p3β2ns∇ϕ(x)
∣∇ϕ(x)∣

(L
3
+LL

′
+ 2LL

′
+L

′′
)

× ∇δ(r − x)∇δ(x − r′)). (B31)

The trace is then simply obtained,

trG
δG−1

δϕ(x)
= ∇[2βυ−1 nsp∇ϕ(x)

∣∇ϕ∣
(L 3
+ 3L L ′

+L ′′)

L 2
+L ′ (1 − ls)],

(B32)
and contains a correction O (υ). Plugging in the result, we arrive
at Eq. (A73).

2. Functional derivative of the 1L–LDA functional
with respect to n j in Eq. (A81)

Goal of this section is to calculate the functional derivative,

δF corr,1L−LDA
sol
δnj(r)

=
δ

δnj(r)∫r
∑

j
nj(r)εcorr

j (r)

+
δ

δnj(r)
υ

2β
tr log βG−1

[ϕ(r)]. (B33)

The functional derivative with respect to nj is complicated due to
the dependence of lj on nj. However, we will see that the derivatives
of lj and the tr log term will be only of sub-leading order and can
therefore be neglected.

The derivative in the first part yields

δ
δnj(r)∫r

∑
j

nj(r)εcorr
j (r) = −β

−1 log (li/lref
i )

+ β−1
(

li − 1
li
−

1
2

niq2
i

∑i q2
i ni

(li − 1)2

l2
i
)

− β−1 3
2

nsq2
i

∑i q2
i ni

(1 − ls)2

l2
s

, (B34)

whereas the derivative of the tr log term can be obtained with

δG−1
(r, r′)

δni(x)
= q2

i βδ(r − x)δ(x − r′); (B35)

thus,
υ

2β
trG

δG−1

δni(r)
=

υ
2β

q2
i βG(r, r)

= β−1
(1 − li), (B36)

which can be summarized to

δF corr,1L−LDA
sol
δnj(r)

= −β−1 log (li/lref
i ) − β

−1
(
(li − 1)2

li

+
1
2

niq2
i

∑i q2
i ni

(li − 1)2

l2
i

+
3
2

nsq2
i

∑i q2
i ni

(1 − ls)2

l2
s
).

(B37)

Evidently, by neglecting the term O (υ2
), one arrives at the result in

Eq. (A81).
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