001044420 001__ 1044420
001044420 005__ 20250804115218.0
001044420 0247_ $$2doi$$a10.3389/fninf.2025.1544143
001044420 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03183
001044420 0247_ $$2pmid$$a40535463
001044420 0247_ $$2WOS$$aWOS:001510526300001
001044420 037__ $$aFZJ-2025-03183
001044420 082__ $$a610
001044420 1001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b0$$eCorresponding author$$ufzj
001044420 245__ $$aNESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules
001044420 260__ $$aLausanne$$bFrontiers Research Foundation$$c2025
001044420 3367_ $$2DRIVER$$aarticle
001044420 3367_ $$2DataCite$$aOutput Types/Journal article
001044420 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754037122_24662
001044420 3367_ $$2BibTeX$$aARTICLE
001044420 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044420 3367_ $$00$$2EndNote$$aJournal Article
001044420 520__ $$aWith increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable—adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.
001044420 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044420 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001044420 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
001044420 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3
001044420 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001044420 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
001044420 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x6
001044420 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044420 7001_ $$0P:(DE-Juel1)186954$$aBabu, Pooja N.$$b1$$ufzj
001044420 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen M.$$b2
001044420 7001_ $$0P:(DE-HGF)0$$aKoll, Luca$$b3
001044420 7001_ $$0P:(DE-HGF)0$$aRumpe, Bernhard$$b4
001044420 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b5$$ufzj
001044420 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2025.1544143$$gVol. 19, p. 1544143$$p1544143$$tFrontiers in neuroinformatics$$v19$$x1662-5196$$y2025
001044420 8564_ $$uhttps://juser.fz-juelich.de/record/1044420/files/fninf-1-1544143.pdf$$yOpenAccess
001044420 8767_ $$d2025-07-21$$eAPC$$jDeposit$$z2677 CHF
001044420 909CO $$ooai:juser.fz-juelich.de:1044420$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001044420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176305$$aForschungszentrum Jülich$$b0$$kFZJ
001044420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186954$$aForschungszentrum Jülich$$b1$$kFZJ
001044420 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b5$$kFZJ
001044420 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044420 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001044420 9141_ $$y2025
001044420 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044420 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044420 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-27
001044420 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044420 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2022$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-11T06:51:00Z
001044420 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-11T06:51:00Z
001044420 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044420 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-11T06:51:00Z
001044420 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-27
001044420 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001044420 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044420 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x1
001044420 980__ $$ajournal
001044420 980__ $$aVDB
001044420 980__ $$aUNRESTRICTED
001044420 980__ $$aI:(DE-Juel1)JSC-20090406
001044420 980__ $$aI:(DE-Juel1)IAS-6-20130828
001044420 980__ $$aAPC
001044420 9801_ $$aAPC
001044420 9801_ $$aFullTexts