001044425 001__ 1044425 001044425 005__ 20250814202247.0 001044425 037__ $$aFZJ-2025-03186 001044425 041__ $$aEnglish 001044425 1001_ $$0P:(DE-Juel1)185991$$aAldarawsheh, Amal$$b0$$eCorresponding author$$ufzj 001044425 1112_ $$aDPG 2025$$cRegensburg$$d2025-03-16 - 2025-03-21$$gDPG$$wGermany 001044425 245__ $$aTopological magnetism in diluted artificial adatom lattices 001044425 260__ $$c2025 001044425 3367_ $$033$$2EndNote$$aConference Paper 001044425 3367_ $$2DataCite$$aOther 001044425 3367_ $$2BibTeX$$aINPROCEEDINGS 001044425 3367_ $$2DRIVER$$aconferenceObject 001044425 3367_ $$2ORCID$$aLECTURE_SPEECH 001044425 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1755155272_32594$$xAfter Call 001044425 520__ $$aThe ability to control matter at the atomic scale has revolutionized our understanding of the physical world, opening doors to unprecedented technological advancements. Quantum technology, which harnesses the unique principles of quantum mechanics, enables us to construct and manipulate atomic structures with extraordinary precision. Here, we propose a bottom-up approach to create topological magnetic textures in diluted adatom lattices on the Nb(110) surface. By fine-tuning adatom spacing, previously inaccessible magnetic phases can emerge. Our findings reveal that interactions between magnetic adatoms, mediated by the Nb substrate, foster the formation of unique topological spin textures, such as skyrmions and anti-skyrmions, both ferromagnetic and antiferromagnetic. Since Nb can be superconducting, our findings present a novel platform with valuable insights into the interplay between topological magnetism and superconductivity. This work, therefore, paves the way for broader exploration of topological superconductivity in conjunction with spintronics applications. 001044425 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001044425 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b1$$ufzj 001044425 909CO $$ooai:juser.fz-juelich.de:1044425$$pVDB 001044425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185991$$aForschungszentrum Jülich$$b0$$kFZJ 001044425 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b1$$kFZJ 001044425 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001044425 9141_ $$y2025 001044425 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 001044425 980__ $$aconf 001044425 980__ $$aVDB 001044425 980__ $$aI:(DE-Juel1)PGI-1-20110106 001044425 980__ $$aUNRESTRICTED