001     1044428
005     20250821202242.0
024 7 _ |a 10.1038/s41586-025-09250-1
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03189
|2 datacite_doi
037 _ _ |a FZJ-2025-03189
082 _ _ |a 500
100 1 _ |a Ooi, Leon Qi Rong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Longer scans boost prediction and cut costs in brain-wide association studies
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755780075_2068
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A pervasive dilemma in brain-wide association studies1 (BWAS) is whether to prioritize functional magnetic resonance imaging (fMRI) scan time or sample size. We derive a theoretical model showing that individual-level phenotypic prediction accuracy increases with sample size and total scan duration (sample size × scan time per participant). The model explains empirical prediction accuracies well across 76 phenotypes from nine resting-fMRI and task-fMRI datasets (R2 = 0.89), spanning diverse scanners, acquisitions, racial groups, disorders and ages. For scans of ≤20 min, accuracy increases linearly with the logarithm of the total scan duration, suggesting that sample size and scan time are initially interchangeable. However, sample size is ultimately more important. Nevertheless, when accounting for the overhead costs of each participant (such as recruitment), longer scans can be substantially cheaper than larger sample size for improving prediction performance. To achieve high prediction performance, 10 min scans are cost inefficient. In most scenarios, the optimal scan time is at least 20 min. On average, 30 min scans are the most cost-effective, yielding 22% savings over 10 min scans. Overshooting the optimal scan time is cheaper than undershooting it, so we recommend a scan time of at least 30 min. Compared with resting-state whole-brain BWAS, the most cost-effective scan time is shorter for task-fMRI and longer for subcortical-to-whole-brain BWAS. In contrast to standard power calculations, our results suggest that jointly optimizing sample size and scan time can boost prediction accuracy while cutting costs. Our empirical reference is available online for future study design (https://thomasyeolab.github.io/OptimalScanTimeCalculator/index.html).
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Orban, Csaba
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Shaoshi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nichols, Thomas E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tan, Trevor Wei Kiat
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kong, Ru
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Marek, Scott
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dosenbach, Nico U. F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Laumann, Timothy O.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gordon, Evan M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Yap, Kwong Hsia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ji, Fang
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Chong, Joanna Su Xian
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Chen, Christopher
|0 P:(DE-HGF)0
|b 13
700 1 _ |a An, Lijun
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Franzmeier, Nicolai
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Roemer-Cassiano, Sebastian N.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hu, Qingyu
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ren, Jianxun
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Liu, Hesheng
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Chopra, Sidhant
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Cocuzza, Carrisa V.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Baker, Justin T.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Zhou, Juan Helen
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 25
|u fzj
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 27
|e Corresponding author
700 1 _ |a Jack, Clifford R.
|0 P:(DE-HGF)0
|b 28
773 _ _ |a 10.1038/s41586-025-09250-1
|0 PERI:(DE-600)1413423-8
|p 731–740
|t Nature
|v 644
|y 2025
|x 0028-0836
856 4 _ |u https://juser.fz-juelich.de/record/1044428/files/s41586-025-09250-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044428
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 25
|6 P:(DE-Juel1)131678
910 1 _ |a Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore N.1 Institute for Health, National University of Singapore, Singapore, Singapore Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
|0 I:(DE-HGF)0
|b 27
|6 P:(DE-HGF)0
910 1 _ |a thomas.yeo@nus.edu.sg
|0 I:(DE-HGF)0
|b 27
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21