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Apervasive dilemmain brain-wide association studies' (BWAS) is whether to
prioritize functional magnetic resonance imaging (fMRI) scan time or sample size.

We derive a theoretical model showing that individual-level phenotypic prediction
accuracy increases with sample size and total scan duration (sample size x scan time
per participant). The model explains empirical prediction accuracies well across

76 phenotypes from nine resting-fMRI and task-fMRI datasets (R* = 0.89), spanning
diverse scanners, acquisitions, racial groups, disorders and ages. For scans of <20 min,
accuracy increases linearly with the logarithm of the total scan duration, suggesting
that sample size and scan time are initially interchangeable. However, sample size is

ultimately more important. Nevertheless, when accounting for the overhead costs of
each participant (such as recruitment), longer scans can be substantially cheaper than
larger sample size for improving prediction performance. To achieve high prediction

performance, 10 minscans are cost inefficient. In most scenarios, the optimal scan
time is at least 20 min. On average, 30 min scans are the most cost-effective, yielding
22% savings over 10 min scans. Overshooting the optimal scan timeis cheaper than
undershooting it, so we recommend a scan time of at least 30 min. Compared with
resting-state whole-brain BWAS, the most cost-effective scan time is shorter for
task-fMRIand longer for subcortical-to-whole-brain BWAS. In contrast to standard
power calculations, our results suggest that jointly optimizing sample size and

scan time can boost prediction accuracy while cutting costs. Our empirical reference
isavailable online for future study design (https://thomasyeolab.github.io/
OptimalScanTimeCalculator/index.html).

A fundamental question in systems neuroscience is how individual
differences in brain function are related to common variation in phe-
notypic traits, such as cognitive ability or physical health. Following
recent work’, we define BWAS as studies of the associations between
phenotypic traitsand common interindividual variability of the human
brain. Animportant subclass of BWAS seeks to predict individual-level
phenotypes using machine learning. Individual-level prediction is
important for addressing basic neuroscience questions and s critical
for precision medicine®”.

Many BWAS are underpowered, leading to low reproducibility and
inflated prediction performance® . Larger sample sizes increase the
reliability of brain-behaviour associations'* and individual-level pre-
diction accuracy'®”. Indeed, reliable BWAS typically requires thou-
sands of participants', although certain multivariate approaches might
reduce sample-size requirements®.

In parallel, other studies have emphasized the importance of a
longer fMRI scan time per participant during both resting and task
states, which leads to improved data quality and reliability’?'82, as
well as new insights into the brain®*"?. When sample size is fixed,
increasing resting-state fMRI scan time per participant improves the
individual-level prediction accuracy of some cognitive measures?.

Thus, in a world with infinite resources, fMRI-based BWAS should
maximize both sample size and scan time for each participant. How-
ever, inreality, BWAS investigators have to decide between scanning
more participants (for a shorter duration) or fewer participants (for
alonger duration). Furthermore, there is a fundamental asymmetry
between sample size and scan time per participant owing to inherent
overhead cost associated with each participant that can be quite sub-
stantial, forexample, whenrecruiting fromarare population. Notably,
the exact trade-off between sample size and scan time per participant
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Fig.1|Increasing the number of training participants and the scan time per
participantleadsto higher phenotypicpredictionaccuracy.a, The prediction
accuracy (Pearson’s correlation) of the cognitive factor score as a function of
thescantime Tused to generate the functional connectivity matrix, and the
number of training participants Nused to train the predictive model in the
ABCD dataset. Increasing the number of training participants and scan time
bothimproved the prediction performance. The asterisk indicates that all of

hasnot been comprehensively characterized. Thistrade-offisnot only
relevant for small-scale studies, but alsoimportant for large-scale data
collection, given competinginterests amonginvestigators and limited
participant availability.

Here we systematically characterize the effects of sample size and
scantime of fMRI on BWAS prediction accuracy, using the Adolescent
Brain and Cognitive Development (ABCD) study and the Human Con-
nectome Project (HCP). To derive areference for future study design,
we also considered the Transdiagnostic Connectome Project (TCP),
Major Depressive Disorder (MDD), Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) and the Singapore Geriatric Intervention Study
to Reduce Cognitive Decline and Physical Frailty (SINGER) datasets
(Extended Data Table 1; see the ‘Datasets, phenotypes and participants’
section of the Methods). We find that, to increase prediction power,
longer scans and larger sample sizes can yield substantial cost savings
compared withincreasing only sample size.

Sample-size and scan-time interchangeability

For each participant in the HCP and ABCD datasets, we calculated a
419 x 419 resting-state functional connectivity (RSFC) matrix using
the first Tminutes of fMRI*®*° (see the ‘Image processing’ section of
the Methods). Twas varied from 2 min to the maximum scan time in
each dataset in intervals of 2 min. The RSFC matrices (from the first
Tminutes) served as input features to predict a range of phenotypes
in each dataset using kernel ridge regression (KRR) through a nested
inner-loop cross-validation procedure (see the ‘Prediction workflow’
section of the Methods). The analyses were repeated with different
numbers of training participants (that is, different training sample size
N). Within each cross-validation loop, the test participants were fixed
across different training set sizes, so that the prediction accuracy was
comparable across different training set sizes (Extended Data Fig. 1).
The whole procedure was repeated multiple times and averaged. The
sample sizes and maximum scan times of all datasets are provided in
Extended Data Table1.

We first considered the cognitive factor score because the cog-
nitive factor score was predicted the best across all phenotypes™.
Figure 1a shows the prediction accuracy (Pearson’s correlation) of
the ABCD coghnitive factor score (HCP results are shown in Supple-
mentary Fig.1). Along ablack iso-contour line, prediction accuracy is
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theavailable participants were used and the sample size is therefore close to,
but notexactly, the number shown. b, The cognitive factor predictionaccuracy
(Pearson’s correlation) inthe ABCD and HCP datasets. There are 30 dots in this
plot.Eachdotrepresents the predictionaccuracyineach dataset foraparticular
pair of sample size and scan time per participant. The Pearson’s correlation
between the 30 pairs of dots was 0.98.

(almost) constant even though scan time and sample size are chang-
ing. Consistent with previous literature'®®, increasing the number
of training participants (when scan time per participant is fixed)
improved prediction performance. Similarly, increasing the scan time
per participant (when sample size is fixed) also improved prediction
performance®.

Although cognitive factor scores are not necessarily comparable
across datasets (due to population and phenotypic differences),
prediction accuracies were highly similar between the ABCD and
HCP datasets (Pearson’s r = 0.98; Fig. 1b). Similar conclusions were
also obtained when we measured the prediction accuracy using the
coefficient of determination (COD) instead of Pearson’s correla-
tion (Supplementary Fig. 2), computed RSFC using the first 7 min-
utes of uncensored data (Supplementary Fig. 3), did not perform
censoring of high motion frames (Supplementary Fig. 4) or used
linear ridge regression (LRR) instead of KRR (Supplementary Figs. 5
and 6).

Notably, the prediction accuracy of the cognitive factor score
increased with the total scan duration (number training partici-
pants x scan time per participant) in both the ABCD (Spearman’s
p=0.99) and HCP (Spearman’s p = 0.96) datasets (Fig. 2a). In both
datasets, there were diminishing returns of sample size and scan time,
whereby each unitincreasein sample size or scan duration resultedin
progressively smaller gains in prediction accuracy (Fig. 2a and Sup-
plementary Table 1).

In the HCP dataset, we also observed diminishing returns of scan
timerelative to sample size, especially beyond 30 min (Fig. 2aand Sup-
plementary Table 1). For example, starting from an accuracy of 0.33
with 200 participants x 14 min scans, a 3.5x larger sample (N =700)
increased theaccuracy to 0.45, whereas a4.1x longer scan (7= 58 min)
raised it only to 0.40.

Beyond the cognitive factor scores, we focused on 29 (out of 59)
HCP phenotypes and 23 (out of 37) ABCD phenotypes with maximum
predictionaccuracies of r> 0.1 (Supplementary Table 2). In total, 90%
of HCP phenotypes (thatis, 26 out 0f29) and100% of ABCD phenotypes
(thatis, 23 out of 23) exhibited prediction accuracies that increased
with the total scan duration (Spearman’s p = 0.85). Diminishing returns
of scantime (relative to the sample size) were observed for many HCP
phenotypes, especially beyond 20 min (Supplementary Table 1).
This phenomenon was less pronounced for the ABCD phenotypes,
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Fig.2| Therelationship between prediction accuracy and total scan
duration (sample size x scan time per participant). a, The prediction
accuracy (Pearson’s correlation) of the cognitive factor score as afunction of
the totalscanduration (defined as the number of training participants x scan
time per participant). Thereare 90 dotsinthe ABCD plot (left) and 174 dots in
the HCP plot (right). Each colour shade represents a different total number of
participants used to train the prediction algorithm. The asterisk indicates that
allavailable participants were used and the sample size is therefore close to,
but not exactly, the number shown. Inboth datasets, there were diminishing
returns of both sample size and scan time, whereby each unitincrease in sample
sizeorscandurationresulted in progressively smaller gainsin prediction
accuracy. Inthe HCP dataset, the diminishing returns of scan time were more
prominentbeyond 30 min (Supplementary Table1). b, The normalized (norm.)
predictionaccuracy of the two cognitive factor scores and 34 other phenotypes
versuslog,[total scan duration], ignoring databeyond 20 min of scan time.

potentially because the maximum scan time was only 20 min (Sup-
plementary Table1).

Alogarithmic pattern between prediction accuracy and total scan
duration was evidentin 73% (19 out of 26) HCP and 74% (17 out 0f 23) of
ABCD phenotypes (Supplementary Table 2 and Supplementary Figs. 7
and 8). To quantify the logarithmic relationship, for each of the 199 HCP
and 17 ABCD phenotypes, we fitted a logarithm curve (with two free
parameters) between prediction accuracy and total scan duration
(ignoring databeyond 20 min per participant; see the ‘Fitting the loga-
rithmic model’ section of the Methods). Overall, total scan duration
explained prediction accuracy across HCP and ABCD phenotypes very
well (COD or R*=0.88 and 0.89, respectively; Supplementary Table 3).

Cognitive, mental health, personality, physicality, emotional and well-being
measures are showninshades of red, grey, blue, yellow, green and pink,
respectively. Theblackline shows that the logarithm of total scan duration
explained prediction performance well across phenotypic domains and
datasets. The Pearson’s correlation was computed between the log of total
scanduration and normalized prediction performance based on 2,520 dots
inthe panel (16 total scan durations x 90 ABCD phenotypes + 18 total scan
durations x 60 HCP phenotypes =2,520). Pvalues were computed using
subsampling (to ensureindependence) and 1,000 permutations (Supplementary
Table1). Attn prob, attention problems; cog, cognition; cryst, crystalized; disc,
discounting; emo match, emotional face matching; ep mem, episodic memory;
exec funct, executive function; flex, flexibility; int, intelligence; mem, memory;
orient, orientation; procspd, processing speed; PSQI, Pittsburgh Sleep Quality
Index; rel proc, relational processing; satis, satisfaction; SusAttn (spec),
sustained attention (specificity); vocab, vocabulary; vs, visuospatial.

Thelogarithm fit allowed phenotypic measures from both datasets
to be plotted on the same normalized prediction performance scale
(Fig.2band Extended DataFig. 2). The logarithm of the total scan dura-
tion explained prediction accuracy very well (r = 0.95; P= 0.001). This
suggests that sample size and scan time are broadly interchangeable,
in the sense that a larger sample size can compensate for a smaller
scan time and vice versa. The exact degree of interchangeability is
characterized in the next section.

The logarithm curve was also able to explain prediction accuracy
well across different prediction algorithms (KRR and LRR) and differ-
ent performance metrics (COD and r), as illustrated for the cognitive
factor scores in Supplementary Fig. 9.
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Fig.3|Asscantimeincreases, sample sizebecomes moreimportant than
scantime. a, The predictionaccuracy of the HCP cognition factor score when
total scandurationis fixed at 6,000 min, while varying the scan time per
participant. Nrefersto the sample size and Trefers to the scantime per
participant. Werepeated a tenfold cross-validation 50 times. Each violin plot
shows the distribution of prediction accuracies across 50 random repetitions
(thatis, there were 50 datapointsin eachviolin with each dot corresponding to
theaverageaccuracy for aparticular cross-validation split). The boxesinside
violinsrepresent the interquartile range (IQR; from the 25th to 75th percentile)
and whiskers extend to the most extreme datapoints not considered outliers
(within1.5x IQR). Two-tailed paired-sample corrected-resampled t-tests* were

Diminishing returns of scanning longer

We have observed diminishing returns of scan time relative to sam-
ple size. To examine this phenomenon more closely, we considered
the prediction accuracy of the HCP factor score as we progressively
increased scan time per participant in 10 min increments while
maintaining 6,000 min of total scan duration (Fig. 3a). The predic-
tion accuracy decreased with increasing scan time per participant,
despite maintaining 6,000 min of total scan duration (Fig. 3a).
However, the accuracy reduction was modest for short scan times
(Fig. 3a and Supplementary Table 1). Similar conclusions were
obtained for all 19 HCP and 17 ABCD phenotypes that followed a
logarithmic fit (Extended Data Fig. 3). These results indicate that,
while longer scan times can offset smaller sample sizes, the required
increase in scan time becomes progressively larger as scan duration
extends.

To gain insights into this phenomenon, we derived a closed-form
mathematical relationship relating prediction accuracy (Pearson’s
correlation) with scan time per participant 7and sample size N (see
the ‘Fitting the theoretical model section of the Methods). To provide
anintuition for the theoretical derivations, we note that phenotypic
prediction can be theoretically decomposed into two components: one
componentrelating to an average prediction (common to all partici-
pants) and a second component relating to a participant’s deviation
from this average prediction.

Theuncertainty (variance) of the first component scales as 1/N, like
a conventional standard error of the mean. For the second compo-
nent, we note that the prediction can be written as regression coef-
ficients x functional connectivity (FC) for linear regression. The
uncertainty (variance) of the regression coefficient estimates scales
with 1/N. The uncertainty (variance) of the FC estimates scales with
1/T (that s, reliability improves with 7). Thus, the uncertainty of the
second component scales with 1/NT. Overall, our theoretical deriva-
tionsuggests that prediction accuracy can be expressed as afunction
of 1/Nand 1/NT with three free parameters.
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performed between the largest sample size (N=600, T=10 min) and the other
samplesizes.Each corrected resampled t-test was performed on 500 pairs of
predictionaccuracy values. Pvalues were as follows: 7.9 x 107 (N = 600 versus
N=120)and 9.8 x10™*(N =600 versus N=100). The asterisks indicate statistical
significance after false discovery rate (FDR) correction; g < 0.05. Pvalues of all
tests and details of the statistical tests are provided in Supplementary Table 1.
b, Prediction accuracy against total scan duration for the cognitive factor score
inthe HCP dataset. The curves were obtained by fitting a theoretical model to
the predictionaccuracies of the cognitive factor score. There are 174 datapoints
inthe panel. The theoretical model explains why the sample size is more
importantthanscantime (see the main text).

The theoretical derivations do not tell us the relative importance
ofthe1/Nand 1/NT terms. We therefore fitted the theoretical model
to actual prediction accuracies in the HCP and ABCD datasets. The
goal was to determine (1) whether our theoretical model (despite the
simplifying assumptions) would still explain the empirical results,
and (2) to determine the relative importance of 1/N and 1/NT (see the
‘Fitting the theoretical model section of the Methods).

We found an excellent fit with actual prediction accuracies for the 19
HCP and 17 ABCD phenotypes that followed a logarithmic fit (Fig. 3b
and Supplementary Figs. 10 and 11): R? = 0.89 for both datasets (Sup-
plementary Table 2). When Twas small, the 1/NT term dominated the
1/Nterm, which explained the almost one-to-one interchangeability
between the scantime and the sample size for shorter scan times. The
existence of thel/Nterm ensured that sample size was still slightly more
important thanscantime evenfor small 7. The FC reliability eventually
saturated withincreasing T. Thus, the 1/Nterm eventually dominated
the1/NTterm, so the sample size became much more important than
the scan time.

For20-minscans, thelogarithmic and theoretical models performed
equally well with equivalent goodness of fit (R?) across the 17 ABCD
phenotypes (P=0.57; Supplementary Table 1). For longer scan times,
the theoretical model exhibited better fit than the logarithmic model
across the19 HCP phenotypes (P=0.002; Supplementary Table1and
Supplementary Fig.12). Furthermore, prediction accuracy under the
logarithmic model will exceed a correlation of one for sufficiently large
Nand T, whichshould not be possible. We therefore use the theoretical
model in the remaining portions of the study.

Predictability increases model adherence

To explore the limits of the theoretical model, recall that the 17 ABCD
phenotypes and 19 HCP phenotypes were predicted with maximum
prediction accuracies of Pearson’sr > 0.1, and that the theoretical model
was able to explain their prediction accuracies with an average COD
or R?of 89% (Supplementary Table 2). If we loosened the prediction



threshold to include phenotypes of which the prediction accuracies
(Pearson’sr) were positivein atleast 90% of all combinations of sample
size Nand scantime T (Supplementary Table 2), the model fit was lower
butstill relatively high with an average COD or R*0f 76% and 73% in ABCD
and HCP datasets, respectively (Supplementary Table 2).

More generally, phenotypes with high overall prediction accura-
cies adhered to the theoretical model well (an example is shown in
Extended DataFig. 4a), while phenotypes with poor prediction accura-
ciesresulted in poor adherence to the model (an example is shownin
Extended Data Fig. 4b). Indeed, the model fit was strongly correlated
with prediction accuracy across phenotypes in both datasets (Spear-
man’s p=0.90; P=0.001; Extended DataFig. 4c,d). These findings sug-
gest that theimperfect fit of the theoretical model for some phenotypes
may be due to their poor predictability, rather than true variationin
prediction accuracy with respect to sample size and scan time.

Non-stationarity weakens model adherence

Asnoted above, some phenotypes probably fail to match the theoreti-
cal model owing to intrinsically poor predictability. However, there
were also phenotypes that were reasonably well predicted, yet still
exhibited a poor fit to the theoretical model. For example, ‘Anger:
Aggression’ was reasonably well predicted in the HCP dataset. While
the predictionaccuracy increased with larger sample sizes (Spearman’s
p=1.00), extending the scan duration did not generate a similarly
consistent effect for this phenotype (Spearman’s p = 0.21; Extended
DataFig. 5a).

This suggests that fMRI-phenotype relationships might be
non-stationary for certain phenotypes, which violates an assump-
tion in the theoretical model. To put this in more colloquial terms,
theassumptionis that the FC-phenotyperelationshipis the same (that
is, stationary) regardless of whether FC was computed based on 5 min
of fMRIfrom the beginning, middle or end of the MRI session. We note
that, for both HCP and ABCD datasets, fMRI was collected over four
runs. To test for non-stationarity, we randomized the fMRI run order
independently for each participant and repeated the FC computation
(and prediction) using the first 7 min of resting-state fMRI data under
the randomized run order (see the ‘Non-stationarity analysis’ section
of the Methods). The run randomization improved the goodness of
fit of the theoretical model (P < 4 x107), suggesting the presence of
non-stationarities (Extended Data Fig. 5b,c).

Arousal changes between or during resting-state scans are well estab-
lished®*; we therefore expect fMRI scans, especially longer-duration
scans, to be non-stationary. However, as run randomization affected
some phenotypes more than others, this suggests that thereis aninter-
action between fMRI non-stationarity and phenotypes, that is, the
fMRI-phenotype relationship is also non-stationary.

Higher overhead costs favour longer scans

We have shown that investigators have some flexibility in attaining
aspecified prediction accuracy through different combinations of
sample size and scan time per participant (Fig. 1). Furthermore, the
theoretical model suggests that the sample size is more important than
the scantime (Fig.3). However, when designing a study, it isimportant
to consider the fundamental asymmetry between sample size and scan
time per participant owing to the inherent overhead cost associated
with each participant. These overhead costs mightinclude recruitment
effort, manpower to perform neuropsychological tests, additional
MRI modalities (for example, anatomical T1, diffusion MRI), other
biomarkers (for example, positron emission tomography (PET) or
blood tests). Thus, the overhead cost can often be higher than the cost
of the fMRI scaniitself.

Toderiveareference for future studies, we considered four additional
resting-state datasets (TCP, MDD, ADNI and SINGER; see the ‘Datasets,

phenotypes and participants’section of the Methods). Intotal, 34 phe-
notypes exhibited good fit to the theoretical model (Supplementary
Table 3 and Supplementary Figs.13-16). We also considered task-FC of
the three ABCD tasks, and found that the number of phenotypes with a
good fittothe theoretical modelranged from16 to19 (Supplementary
Table 3 and Supplementary Figs.17-19).

In total, we considered nine datasets: six resting-fMRI datasets and
three ABCD task-fMRI datasets. We fitted the theoretical model to 76
phenotypesinthe nine datasets, yielding an average COD or R* 0f 89%
(Supplementary Table1). These datasets span multiple fMRIsequences
(single-echo single-band, single-echo multiband, multi-echo multi-
band), coordinate systems (fsLR, fsaverage, MNI152), racial groups
(Western and Asian populations), mental health conditions (healthy,
neurological and psychiatric) and age groups (children, young adults
and olderindividuals). More dataset characteristics are shownin Sup-
plementary Table 5.

For each phenotype, the fitted model was normalized to the phe-
notype’s maximum achievable accuracy (estimated by the theoretical
model), yielding afraction of maximum achievable prediction accuracy
for every combination of sample size and scan time per participant. The
fraction of maximumachievable predictionaccuracy was then averaged
across the phenotypes under a hypothetical tenfold cross-validation
scenario (Fig.4a). Note that the Pearson’s correlation between Figs. 4a
andlaacross corresponding sample sizes and scan durations was 0.97
(Supplementary Table 1).

Given a scan cost per hour (for example, US$500) and overhead
cost per participant (for example, US$500), we can find all pairs of
sample sizes and scan times that fit within a particular fMRI budget
(for example, US$1 million). We can then use Fig. 4a to find the optimal
sample size and scan time leading to the largest fraction of maximum
prediction accuracy (see the ‘Optimizing within a fixed fMRI budget’
section of the Methods). Extended Data Fig. 6 illustrates the prediction
accuracy thatis achievable with different fMRIbudgets, costs per hour
of'scantime and overhead costs per participant. Extended Data Table 2
shows the optimal scan times for a wider range of fMRI budgets, scan
costs per hour and overhead costs per participant.

Larger fMRI budgets, lower scan costs and lower overhead costs
enable larger sample sizes and scan times, leading to agreater achiev-
able prediction accuracy (Extended DataFig. 6). From the curves, we
can determine the optimal scan time to achieve the greatest predic-
tion accuracy within a fixed scan budget (Extended Data Fig. 6 (solid
circles)). The optimal scantime increases with larger overhead costs,
lower fMRIbudget and lower scan costs. As the scan time per partici-
pantincreases, all curves exhibit a steep initial ascent, followed by a
gradual decline. The asymmetry of the curves suggests thatitis better
to overshoot than undershoot optimal scan time (Supplementary
Table1).

For example, consider a US$2.5 million US National Institutes of
Health (NIH) RO1 grant. Assuming an fMRI budget of US$1 million, a
scan cost of US$500 per hour and an overhead cost of US$500 per
participant, the optimal scan time would be 34.5 min per participant.
Suppose PET data were also collected, then the overhead cost might
increase to US$5,000 per participant, resulting in an optimal scan time
0f159.3 min per participant.

30-minscans are the most cost-effective

Beyond optimizing scan time to maximize prediction accuracy withina
fixed scanbudget (previous section), the model fits showninFig. 4a can
also be used to optimize scan time to minimize the study cost to achieve
afixed accuracy target. For example, suppose we want to achieve 90% of
the maximum achievable accuracy, we can find all pairs of sample size
and scan time per participantalong the black contourline correspond-
ingto 0.9inFig.4a. Forevery pair of sample size and scan time, we can
then compute the study cost given a particular scan cost per hour (for
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possible accuracy targets (80%, 90% or 95% of the maximum achievable
accuracy), 2 possible overhead costs (US$500 or US$1,000 per participant) and
2 possible scan costs per hour (US$500 or US$1,000), therewere3x2x2=12
conditions. Intotal, we had 9 datasets x 12 conditions =108 scenarios. For 85%
of scenarios, the cost-optimal scan time was >20 min (red dashed line).c, The

example, US$500) and a particular overhead cost per participant (for
example, US$1,000). The optimal scan time (and sample size) with the
lowest study cost canthenbe obtained (see the ‘Optimizing to achieve
afixed accuracy’ section of the Methods).

Here we considered three possible accuracy targets (80%, 90% or
95% of maximum accuracy), two possible overhead costs (US$500
or US$1,000 per participant) and two possible scan costs per hour
(US$500 or US$1,000). In total there were 3 x 2 x 2 =12 conditions. As
there were nine datasets, this resulted in12 x 9 =108 scenarios. In the
vast majority (85%) of these 108 scenarios, the optimal scan time was
atleast 20 min (Fig. 4b).

However, during study design, the optimal scan time is not known
inadvance. We therefore also aimed to identify a fixed scan time that
is cost-effective in most situations. Figure 4c shows the normalized
cost inefficiency of various fixed scan times relative to the optimal
scan time for each of 108 scenarios. Many consortium BWAS collect
10 min fMRI scans, which is highly cost inefficient. On average across
resting and task states, 30 min scans were the most cost-effective (95%
bootstrapped confidence interval (Cl) = 25-40; Extended Data Fig. 7
and Supplementary Table 1), yielding 22% cost savings over 10 min
scans (Fig. 4d). We again note the asymmetry in the cost curves, so it
ischeaper to overshoot than undershoot the most cost-effective scan
time. For example, 50-min scans overshoot the optimum by 20 min,
but still incur 18% cost savings over 10 min scans (which undershoot
the optimum by 20 min).
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normalized costinefficiency (across the 108 scenarios) as a function of fixed
scantime per participant, relative to the optimal scantimeinb. In practice, the
optimalscantimeinbisnotknowninadvance, so this plot seeks to derive a
fixed optimal scan time generalizable to most situations. Each box plot
contains 108 datapoints (corresponding to 108 scenarios). The box limits show
theIQR, the horizontal lines show the median values and the whiskers span
non-outlier extremes (within1.5 xIQR). For visualization, box plots were
normalized by subtracting the costinefficiency of the best possible fixed scan
time (30 minin this case), so that the normalized costinefficiency of the best
possible fixed scantimeis centred at zero.d, The cost savings relative to 10 min
of'scantime per participant. The greatest cost saving (22%) was achieved at

30 min.

Minimizing task-fMRI costs

Across the six resting-state datasets (Fig. 5a), the most cost-effective
scan time was the longest for ABCD (60 min; Cl=40-100) and
shortest for the TCP and ADNI datasets (20 min; TCP, Cl =10-35;
ADNI, CI=15-35). However, a scan time of 30 min was still relatively
cost-effective for all datasets, owing to a flat cost curve near the opti-
mum and the asymmetry of the cost curve. For example, even for the
TCP dataset, which had the shortest most cost-effective scan time of
20 min, over-scanning with 30-min scans led to only a3.7% higher cost
relative to 20 min, compared with a 7.3% higher cost for under-scanning
with 10 min scans.

Previous studies have shown that task-FC yields better prediction
performance for cognitive measures®*. Here we extend previous
results, finding that the most cost-effective scan time was shorter for
ABCD task-fMRIthan ABCD resting-state fMRI (Fig. 5Sb and Supplemen-
tary Table1). Amongthe three tasks, the most cost-effective scan time
was theshortest for N-back at 25 min (Cl =20-35),but 30 minscansled
to only a 0.9% higher cost (relative to 25 min), compared with a16.1%
higher cost for 10 min scans.

These task results suggest that the most cost-effective scan time is
sensitive to brain state manipulation. Task-based fMRI may preferen-
tially engage cognitive and physiological mechanisms that are closely
tied to the expression of specific phenotypes (for example, processing
speed), thereby enhancing the specificity of functional connectivity
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Fig. 5| Variationin the most cost-effective scan time across resting-state
and task-state fMRI. a, Cost inefficiencyasafunction of the scan time per
participant for the six resting-state datasets. This plot provides the same
information as Fig. 4c, butshown for each dataset separately. b, Cost inefficiency
for ABCD resting-state and task-state fMRI. ¢, Cost inefficiency whenscans
collectedintwo separate sessions versus one session (based onthe HCP dataset).

estimates for phenotypic prediction. Tasks may also facilitate shorter,
more-efficient scan durations by aligning brain states across individu-
alsina controlled manner, thereby reducing spurious non-stationary
influences that could otherwise obscure reliable modelling of inter-
individual differences. This alignment might be better achieved in
tasks that present stimuli and conditions with identical timing across
participants—whether using event-related or block designs.

Non-stationarity may also be potentially increased by distributing
resting-state fMRI runs across multiple sessions. As the HCP dataset
was collected on two different days (sessions), we were also able to
directly compare the effect of a two-session versus a one-session
design. The most cost-effective scan time for the two-session design
was only slightly longer than for the original HCP analysis (Fig. 5¢):
40 min (CI =30-55) versus 30 min (Cl = 25-40).

Overall, these results suggest that state manipulation can influ-
encethe most cost-effective scantime, and that arelatively large state
manipulation (for example, task fMRI) can significantly influence the
cost-effectiveness.

Variation across phenotypes and scan parameters

There were clear variations across phenotypes. For example, there were
phenotypes that could be predicted well and demonstrated prediction
gains up to the maximum amount of data per participant (for example,
ageinthe ADNI dataset; Supplementary Fig.16). However, there were
alsoother phenotypesthat were predicted less well (forexample, BMI
inthe SINGER dataset; Supplementary Fig.13) but showed prediction
gains up to the maximum amount of data per participant. As single
phenotypes are not easily interpreted, we grouped the phenotypesinto
seven phenotypic domains to study phenotypicvariationin more detail.

For five out of the seven phenotypic domains, the most cost-effective
scan times ranged from 25 min to 40 min (Extended DataFig. 8a). The
most cost-effective scan time for the emotion domain was exception-
ally long, but this outlier was driven by a single phenotypic measure,
soshould not be overinterpreted. For the PET phenotypic domain, our
original scenarios assumed overhead costs of US$500 or US$1,000 per
participant, which was unrealistic. Assuming a more realistic overhead
PET cost per participant (US$5,000 or $10,000) yielded 50 min as the
most cost-effective scan time.

Although there was astrong relationship between phenotypic predic-
tionaccuracy and goodness-of-fit to the theoretical model (Extended
Data Fig. 4), we did not find an obvious relationship between pheno-
typic predictionaccuracy and optimal scantime (Extended Data Fig. 8b
and Supplementary Table 1). Recent studies have also demonstrated
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Similar to Fig. 4c, for visualization, each curve is normalized by subtracting the
costinefficiency of the best possible fixed scan time (of each curve), so that the
normalized cost inefficiency of the best possible fixed scan timeis centred at
zero. Fora-c,thenumbersinbrackets indicate the number of phenotypes. The
arrows indicate the most cost-effective scan time. 95% bootstrapped Cls are
reportedinSupplementary Table1.

that phenotypic reliability is important for BWAS power*®*. In our
theoretical model, phenotypic reliability directly impacts the overall
prediction accuracy but does not directly contribute to the trade-off
between sample size and scan time. Indeed, there was not an obvious
relationship between phenotypic test-retest reliability and optimal
scan time (Extended Data Fig. 8c and Supplementary Table 1).

Therewasalsonotanobviousrelationship between optimal scantime
and temporal resolution, voxel resolution or scan sequence (Extended
DataFigs.8d-fand Supplementary Table 1). We emphasize that we are
not claiming that scan parameters do not matter, but that other varia-
tions between datasets (for example, phenotypes, populations) might
exert a greater impact than common variation in scan parameters.

Consistent with the previous sections, we note that, for the vast
majority of phenotypes and scan parameters, the optimal scan time
was at least 20 min and, on average, the most cost-effective scan time
was 30 min (Fig. 4c).

Minimizing costs of subcortical BWAS

Our main analyses involved a cortical parcellation with 400 regions
and 19 subcortical regions, yielding 419 x 419 RSFC matrices. We
also repeated the analyses using 19 x 419 subcortical-to-whole-brain
RSFC matrices. The most cost-effective scan time for subcortical RSFC
was about double that of whole-brain RSFC (Fig. 6a, Supplementary
Table 1and Extended Data Fig. 7). This might arise due to the lower
signal-to-noise ratio (SNR) in subcortical regions, resulting in the need
for alonger scan time to achieve a better estimate of subcortical FC.
To explore the effects of fMRI SNR, for each parcel time course, we
z-normalized the fMRI time course, so the resulting s.d. of the time
course was equal to one. We then added zero mean Gaussian noise
with s.d. of . Even doubling the noise (¢ =1) had very little impact on
the optimal scan time (Fig. 6b and Supplementary Table1). As asanity
check, we added a large quantity of noise (o = 3), which led to amuch
longer optimal scan time (Fig. 6b and Supplementary Table 1).
Intuitively, this is not surprising because a lower SNR means
that a longer scan time is necessary to get an accurate estimate of
individual-level FC. Itis interesting that alarge SNR change is neces-
sary to make a noticeable difference in optimal scan time, which might
explaintherobustness of optimal scan times across the common scan
parameters that we explored in the previous section (Extended Data
Fig.8). Thus, even with small to moderate technologicalimprovements
in SNR, the most cost-effective scan time is unlikely to substantially
deviate from our estimate. However, a major increase in SNR could
shortenthe most cost-effective scan time from the current estimates.
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Fig. 6| The most cost-effective scan time for subcortical BWAS islonger
thanforwhole-brain BWAS. a, Costinefficiency asafunction of scan time per
participant with subcortical-to-whole-brain FC versus whole-brain FC. For
visualization, similar to Fig. 4c, the curves are normalized by subtracting the
costinefficiency of the best possible fixed scan time (of each curve), so that
the normalized costinefficiency of the best possible fixed scan timeis
centred at zero. Thenumbersinbrackets indicate the number of phenotypes

We also varied the resolution of the cortical parcellation with 200,
400, 600, 800 or 1,000 parcels for predicting the cognitive factor
scoresinthe HCP and ABCD datasets. There was a weak trend in which
higher parcellationresolution led to slightly lower optimal scan time,
although there was abig drop inthe optimal scan time from 200 parcels
to400 parcelsinthe ABCD dataset (Fig. 6c and Supplementary Table1).
Given that subcortical-to-whole-brain FC has fewer edges (features)
than whole-brain FC, this could be another reason why subcortical-
to-whole-brain FC requires longer optimal scan time.

Accuracy versus reliability

Finally, we examine the effects of sample size and scan time per par-
ticipant on the reliability of BWAS! using a previously established
split-half procedure™"” (Supplementary Fig. 20; see the ‘Brain-wide
association reliability’ section of the Methods). For both univariate
and multivariate BWAS reliability, diminishing returns of scan time
(relative to sample size) occurred beyond 10 min per participant (Sup-
plementary Figs. 21-29), instead of 20 min for prediction accuracy
(Fig. 2). We note that reliability is necessary but not sufficient for
validity”*2. For example, hardware artifacts may appear reliably in
measurements without having any biological relevance. Thus, reliable
BWAS features do not guarantee accurate prediction of phenotypic
measures. As such, werecommend that researchers prioritize predic-
tionaccuracy.

Longer scans are more cost-effective

To summarize, 30 min scans are on average the most cost-effective
acrossresting-state and task-state whole-brain BWAS (Fig. 4c). The cost
curves are also asymmetric, so it is cheaper to overshoot than under-
shoot the optimum (Fig. 4d). Thus, even when the most-effective scan
timeis shorter than 30 min (for example, N-back task or TCP dataset),
30-min scans incur only a small penalty relative to knowing the true
optimal scan time a priori. Furthermore, for subcortical BWAS, the
most cost-effective scans are much longer than 30 min.

Ourresults presenta compelling case for moving beyond traditional
power analyses, of which the only inputs are sample size, to inform
BWAS design. Such power analyses can only point towards maximiz-
ing the sample size, so the scan time becomes implicitly minimized
under budget constraints. Our findings show that we canachieve higher
prediction performance by increasing both the sample size and the
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scan time, while generating substantial cost-savings compared with
increasing the sample size alone.

Our results complement recent advocation for larger sample sizes
toincrease BWAS reproducibility’. Consistent with previous studies®,
when sample size is small, there is a high degree of variability across
cross-validation folds (Fig. 3a). Furthermore, large sample sizes are still
necessary for high prediction accuracy. To achieve 80% of the maximum
prediction accuracy with 30-min scans, a sample size of about 900 is
necessary (Fig.4a), whichismuch larger than typical BWAS'. To achieve
90% of the maximum predictionaccuracy with30-minscans,asample
size of around 2,500 is necessary (Fig. 4a).

Inaddition toincreasing the sample size and scan time, BWAS effect
sizes can also be enhanced through innovative study designs. Recent
work showed that U-shaped population sampling can enhance the
strength of associations between functional connectivity and pheno-
typic measures**. However, more complex screening procedures will
increase the overhead costs per participant, which might lengthen
optimal scan time.

The current analysis was focused on high target accuracies (80%,
90% or 95%) and relatively low overhead costs (US$500 or US$1,000).
Lower target accuracies (in smaller-scale studies) and higher overhead
costs (for example, PET, multisite data collection) will lead to longer
cost-effective scan time (Extended Data Fig. 6). In practice, scans are
also more likely to be spuriously shortened (for example, due to par-
ticipant discomfort) than to be spuriously extended. We therefore
recommend a scan time of at least 30 min.

Overall, 10 minscans arerarely cost-effective, and the optimumscan
timeis atleast 20 minin most BWAS (Fig. 4c). Among the datasets that
we analysed, four included scans of at least 20 min, providing robust
evidence to support this conclusion across multiple datasets. By con-
trast, we could identify only one dataset (HCP) with scans exceeding
30 min and a sufficiently large sample size for inclusion in our study.
Similarly, although the ABCD task-fMRI scans are among the longest
in existing large-scale datasets, the longest scan duration is less than
13 min. This limitation underscores the importance of our findings,
emphasizing the need for BWAS to prioritize longer scans.

Non-economic considerations

Beyond economic considerations, the representativeness of the data
sample and the generalizability of predictive models to subpopulations
are also important factors when designing a study*°. One approach



would be to aim for a larger sample size (potentially at the expense
of scan time) to ensure sufficient sample sizes for subpopulations.
Alternatively, one could also make the participant-selection criteria
more stringent to maintain the representativeness of asubpopulation.
However, this would drive up the recruitment cost for the subpopula-
tion, so our results suggest that it might be more economically efficient
toscan harder-to-recruit subpopulations longer. For example, instead
of 20 min resting-state scans for all ABCD participants, perhaps sub-
populations (for example, Black participants) could be scanned for a
longer period of time.

In other situations, the sample size is out of the investigator’s con-
trol, for example, if the investigator wants to scan an existing cohort.
Inthe case of the SINGER dataset, the sample size was determined by
the power calculation of the actual lifestyle intervention® with the
imaging data included to gain further insights into the intervention.
As another example, in large-scale prospective studies (for example,
the UK Biobank), the sample size is determined by the fact that only a
small proportion of participants will develop a given condition in the
future®. In these situations, the scan time becomes constrained by the
overallbudget and fitting all phenotyping efforts within asmall number
of sessions (to avoid participant fatigue). Nevertheless, even in these
situations in which the sample size is predetermined, Fig. 4a can still
provide an empirical reference on the marginal gains in prediction
accuracy as a function of scan time.

Finally, some studies may necessitate extensive scan time per
participant by virtue of the scientific question. For example, when
studying sleep stages, it is not easy to predict how long a participant
would need to enter a particular sleep stage. Conversely, some phe-
nomena of interest might be inherently short-lived. For example, if
the goal is to characterize the effects of a fast-acting drug (for exam-
ple, nitrous oxide), then it might not make sense to collect long fMRI
scans. Furthermore, not all studies are interested in cross-sectional
relationships between brain and non-brain-imaging phenotypes.
For example, in the case of personalized brain stimulation®*** or
neurosurgical planning®, a substantial quantity of resting-state
fMRI data might be necessary for accurate individual-level network
estimation®**%,

Aweb application for study design

Beyond our broad recommendation of scan times of at least 30 min,
we recognize that investigators might be interested in achieving the
optimal sample size and scan time specific to their study’s constraints.
We therefore builtaweb application to help to facilitate flexible study
design (https://thomasyeolab.github.io/OptimalScanTimeCalculator/
index.html). The web applicationincludes additional constraints that
were not analysed in the current study. For example, certain demo-
graphic and patient populations might not be able to tolerate longer
scans, so an additional factor will be the maximum scan time in each
MRIsession. Furthermore, our analysis was performed on participants
whose datasurvived quality control. We have therefore also provided
anoption ontheweb application to allow researchers to specify their
estimate of the percentage of participants whose data might be lost due
to poor data quality or participant drop out. Overall, our empirically
established guidelines provide actionable insights for significantly
reducing costs, while improving BWAS individual-level prediction
performance.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods

Datasets, phenotypes and participants

Following previous studies, we considered S8 HCP phenotypes>>*and
36 ABCD phenotypes™*°. We also consider a cognition factor score
derived fromall phenotypes from each dataset”, yielding a total of 59
HCP and 37 ABCD phenotypes (Supplementary Table 4).

In this study, we used resting-state fMRI from the HCP WU-Minn
S$1200 release. We filtered participants from a previously reported
set of 953 participants®, excluding participants who did not have at
least 40 min of uncensored data (censoring criteria are discussed
in the ‘Image processing’ section) or did not have the full set of the
59 non-brain-imaging phenotypes (hereafter, phenotypes) that we
investigated. This resulted in a final set of 792 participants of whom
the demographics are described in Supplementary Table 5. The HCP
data collection was approved by a consortium of institutional review
boards (IRBs) in the USA and Europe, led by Washington University in
St Louis and the University of Minnesota (WU-Minn HCP Consortium).

We also considered resting-state fMRI from the ABCD 2.0.1release.
We filtered participants from a previously reported set of 5,260 par-
ticipants®. We excluded participants who did not have at least 15 min
of uncensored resting-fMRI data (censoring criteria are discussed in
the ‘Image processing’ section) or did not have the full set of the 37
phenotypes that we investigated. This resulted in a final set 0of 2,565
participants of whom the demographics are described in Supplemen-
tary Table 5. Most ABCD research sites relied on a central IRB at the
University of California, San Diego, for the ethical review and approval
oftheresearch protocol, while the others obtained local IRB approval.

We also used resting-state fMRI from the SINGER baseline cohort.
Wefiltered participants from aninitial set of 759 participants, exclud-
ing participants who did not have at least 10 min of resting-fMRI data
or did not have the full set of the 19 phenotypes that we investigated
(Supplementary Table 4). This resulted in afinal set of 642 participants
of whom the demographics described in Supplementary Table 5. The
SINGER study has been approved by the National Healthcare Group
Domain-Specific Review Board and is registered under ClinicalTrials.
gov (NCT05007353) with written informed consent obtained from all
participants before enrolment into the study.

We used resting-state fMRI from the TCP dataset. We filtered par-
ticipants from an initial set of 241 participants, excluding participants
who did not have at least 26 min of resting-fMRI data or did not have
thefullset of the 19 phenotypes that we investigated (Supplementary
Table 4). This resulted in a final set of 194 participants of whom the
demographics are described in Supplementary Table 5. The partici-
pants fromthe TCP study provided written informed consent following
guidelines established by the Yale University and McLean Hospital
(Partners Healthcare) IRBs.

We used resting-state fMRI from the MDD dataset. We filtered
participants from an initial set of 306 participants. We excluded par-
ticipants who did not have at least 23 min of resting-fMRI data or did
not have the full set of the 20 phenotypes that we investigated (Sup-
plementary Table 4). This resulted in a final set of 287 participants of
whom the demographics are described in Supplementary Table 5. The
MDD dataset was collected from multiple rTMS clinical trials, and all
data were obtained at the pretreatment stage. These trials include
ChiCTR2300067671 (approved by the Institutional Review Boards of
Beijing Anding Hospital, Henan Provincial People’s Hospital, and Tianjin
Medical University General Hospital); NCT05842278, NCT05842291
and NCT06166082 (all approved by the IRB of Beijing HuiLongGuan
Hospital); and NCT06095778 (approved by the IRB of the Affiliated
Brain Hospital of Guangzhou Medical University).

We used resting-state fMRI from the ADNI datasets (ADNI2, ADNI 3
and ADNI GO). We filtered participants from an initial set of 768 par-
ticipants with both fMRI and PET scans acquired within 1 year of each
other. We excluded participants who did not have at least 9 min of

59,60

resting-fMRI data or did not have the full set of the six phenotypes
that we investigated (Supplementary Table 4). This resulted in a final
set of 586 participants of whom the demographics are described in
Supplementary Table 5. The ADNI study was approved by the IRBs of
all participating institutions with informed written consent from all
participants at each site.

Moreover, we considered task-fMRIfrom the ABCD 2.0.1release. We
filtered participants from a previously described set of 5,260 partici-
pants®. We excluded participants who did not have all three task-fMRI
data remaining after quality control, or did not have the full set of the
37 phenotypes that we investigated. This resulted inafinal set 0f 2,262
participants, of whomthe demographics are described in Supplemen-
tary Table 5.

Image processing

For the HCP dataset, the MSMAIIICA-FIX resting state scans were used®’.
Globalsignal regression (GSR) has been shown to improve behavioural
prediction®®, sowe further applied GSR and censoring, consistent with
our previous studies'®*®®%, The censoring process entailed flagging
frames with either FD (framewise displacement) > 0.2 mm or DVARS
(differential variance) > 75. The frames immediately before and after
flagged frames were marked as censored. Moreover, uncensored seg-
ments of data consisting of less than five frames were also censored
during downstream processing.

For the ABCD dataset, the minimally processed resting state scans
were used®®, Processing of functional data was performed consistent
with our previous study®. Specifically, we additionally processed the
minimally processed data with the following steps. (1) The functional
images were aligned to the T1images using boundary-based regis-
tration®*. (2) Respiratory pseudomotion filtering was performed by
applying a bandstop filter of 0.31-0.43 Hz (ref. 65). (3) Frames with
FD > 0.3 mmor DVARS > 50 were flagged. The flagged frame, as well as
the frame immediately before and two frames immediately after the
marked frame were censored. Furthermore, uncensored segments of
data consisting of less than five frames were also censored. (4) Global,
white matter and ventricular signals, six motion parameters and their
temporal derivatives were regressed from the functional data. Regres-
sion coefficients were estimated from uncensored data. (5) Censored
frames were interpolated with the Lomb-Scargle periodogram®.
(6) The dataunderwent bandpass filtering (0.009-0.08 Hz). (7) Lastly,
the datawere projected onto FreeSurfer fsaverage6 surface space and
smoothed using a 6 mm full-width half-maximum kernel. Task-fMRI
data were processed in the same way as the resting-state fMRI data.

For the SINGER dataset, we processed the functional data with the
following steps. (1) Removal of the first four frames. (2) Slice time
correction. (3) Motion correction and outlier detection: frames
with FD > 0.3 mm or DVARS > 60 were flagged as censored frames. 1
frame before and 2 frames after these volumes were flagged as cen-
sored frames. Uncensored segments of data lasting fewer than five
contiguous frames were also labelled as censored frames. Runs with
over half of the frames censored were removed. (4) Correcting for
susceptibility-induced spatial distortion. (5) Multi-echo denoising®.
(6) Alignment with structural image using boundary-based registra-
tion®*.(7) Global, white matter and ventricular signals, six motion param-
etersand their temporal derivatives were regressed from the functional
data. Regression coefficients were estimated from uncensored data.
(8) Censored frames were interpolated with the Lomb-Scargle peri-
odogram®, (9) The dataunderwentbandpass filtering (0.009-0.08 Hz).
(10) Lastly, the data were then projected onto FreeSurfer fsaverage6
surface space and smoothed using a 6 mm full-width half-maximum
kernel.

For the TCP dataset, the details of data processing can be found else-
where®. In brief, the functional data were processed by following the
HCP minimal processing pipeline with ICA-FIX, followed by GSR. The
processed data were then projected onto MNI space.
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For the MDD dataset, we processed the functional data with the
following steps. (1) Slice time correction. (2) Motion correction.
(3) Normalization for global mean signal intensity. (4) Alignment
with structural image using boundary-based registration®. (5) Linear
detrending and bandpass filtering (0.01-0.08 Hz). (6) Global, white
matter and ventricular signals, six motion parameters and their tem-
poral derivatives were regressed from the functional data. (7) Lastly,
the datawerethen projected onto FreeSurfer fsaverage6 surface space
and smoothed using a 6 mm full-width half-maximum kernel.

For the ADNI dataset, we processed the functional data with the fol-
lowing steps. (1) Slice time correction. (2) Motion correction. (3) Align-
ment with structural image using boundary-based registration®. (4)
Global, white matter and ventricular signals, six motion parameters,
and their temporal derivatives were regressed from the functional data.
(5) Lastly, the datawere then projected onto FreeSurfer fsaverage6 sur-
face space and smoothed using a 6 mm full-width half-maximumkernel.

We derived a419 x 419 RSFC matrix for each participant of each data-
set using the first T minutes of scan time. The 419 regions consisted
of 400 parcels from the Schaefer parcellation®’, and 19 subcortical
regions ofinterest®’. For the HCP, ABCD and TCP datasets, Twas varied
from 2 to the maximum scan time in intervals of 2 min. This resulted
in 29 RSFC matrices per participant in the HCP dataset (generated
from using the minimum amount of 2 min to the maximum amount of
58 mininintervals of 2 min), 10 RSFC matrices per participantin the
ABCD dataset (generated from using the minimum amount of 2 min
to the maximum amount of 20 minin intervals of 2 min) and 13 RSFC
matrices per participant in the TCP dataset (generated from using
the minimum amount of 2 min to the maximum amount of 26 minin
intervals of 2 min).

Inthe case ofthe MDD dataset, the total scan time was an odd number
(23 min), so Twas varied from 3 to the maximum of 23 min in inter-
vals of 2 min, which resulted in 11 RSFC matrices per participant. For
SINGER, ADNI and ABCD task-fMRI data, as the scans were relatively
short (around 10 min), Twas varied from 2 min the maximum scan time
inintervals of 1 min. This resulted in 9 RSFC matrices per participantin
the SINGER datasets (generated from using the minimum amount of
2 minto the maximumamount of 10 min), 8 RSFC matrices per partici-
pantinthe ADNIdatasets (generated from using the minimumamount
of 2 min to the maximum amount of 9 min), 9 RSFC matrices per par-
ticipant in the ABCD N-back task (from using the minimum amount
of 2 min to the maximum amount of 9.65 min), 11 RSFC matrices per
participantinthe ABCD SST task (from using the minimum amount of
2 min to the maximum amount of 11.65 min) and 10 RSFC matrices per
participantin the ABCD MID task (from using the minimum amount of
2 min to the maximum amount of 10.74 min).

We note that the above preprocessed datawere collated across mul-
tiplelaboratories and, evenwithin the same laboratory, datasets were
processed by differentindividuals many years apart. This led to signifi-
cant preprocessing heterogeneity across datasets. For example, raw FD
was used in the HCP dataset because it was processed many years ago,
while the morerecently processed ABCD dataset used afiltered version
of FD, which has been shown to be more effective. Another variation
is that some datasets were projected to fsaverage space, while other
datasets were projected to MNI152 or fsLR space.

Prediction workflow

The RSFC generated from the first 7 minutes was used to predict
each phenotypic measure using KRR with an inner-loop (nested)
cross-validation procedure.

Let usillustrate the procedure using the HCP dataset (Extended
DataFig.1). We began with the full set of participants. A tenfold nested
cross-validation procedure was used. The participants were divided in
ten folds (Extended DataFig.1(first row)). We note that care was taken
sosiblings were not split across folds, so the ten folds were not exactly
the same sizes. For each of ten iterations, one fold was reserved for

testing (thatis, test set), and the remainder was used for training (that
is, the training set). As there were 792 HCP participants, the training set
sizewas roughly 792 x 0.9 = 700 participants. The KRR hyperparameter
was selected through a tenfold cross-validation of the training set.
The best hyperparameter was then used to train a final KRR model in
the training set and applied to the test set. Prediction accuracy was
measured using Pearson’s correlation and COD*.

The above analysis was repeated with different training set sizes
achieved by subsampling each training fold (Extended Data Fig. 1
(second and third rows)), while the test set remained identical across
different training set sizes, so theresults are comparable across differ-
ent training set sizes. The training set size was subsampled from 200
to 600 (in intervals of 100). Together with the full training set size of
approximately 700 participants, there were 6 different training set
sizes, corresponding to 200, 300,400, 500, 600 and 700.

The whole procedure was repeated with different values of T. As
there were 29 values of T, there were in total 29 x 6 sets of prediction
accuracies for each phenotypic measure. To ensure robustness, the
above procedure was repeated 50 times with different splits of the
participants into ten folds to ensure stability (Extended Data Fig. 1).
The prediction accuracies were averaged across all test folds and all
50 repetitions.

Theprocedure for the other datasets followed the same principle as
the HCP dataset. However, the ABCD (rest and task) and ADNI datasets
comprised participants from multiple sites. Thus, following our previ-
ous studies®*’, we combined ABCD participants across the 22 imaging
sites into 10 site-clusters and combined ADNI participants across the
71imaging sites into 20 site-clusters (Supplementary Table 5). Each
site-cluster has atleast 227,156 and 29 participants in the ABCD (rest),
ABCD (task) and ADNI datasets respectively.

Instead of the tenfold inner-loop (nested) cross-validation proce-
dureinthe HCP dataset, we performed a leave-three-site-clusters-out
inner-loop (nested) cross-validation (that is, seven site-clusters are
used for training and three site-clusters are used for testing) in the
ABCD rest and task datasets. The hyperparameter was again selected
using atenfold CV withinthe training set. This nested cross-validation
procedure was performed for every possible split of the site clusters,
resultingin120 replications. The prediction accuracies were averaged
across all120 replications.

We did not perform aleave-one-site-cluster-out procedure because
thesite-clusters are ‘fixed’, so the cross-validation procedure can only be
repeated ten times under aleave-one-site-cluster-out scenario (instead
of 120 times). Similarly, we did not go for leave-two-site-clusters-out
procedure because that will only yield a maximum of 45 repeti-
tions of cross-validation. On the other hand, if we left more than
three site clusters out (for example, leave-five-site-clusters-out), we
could achieve more cross-validation repetitions, but at the cost of
reducing the maximum training set size. We therefore opted for the
leave-three-site-clusters-out procedure, consistent with our previous
study®.

To be consistent with the ABCD dataset, for the ADNI dataset, we
also performed a leave-three-site-clusters-out inner-loop (nested)
cross-validation procedure. This procedure was performed for every
possible split of the site clusters, resulting in 1,140 replications. The
prediction accuracies were averaged across all 1,140 replications.

We also performed tenfold inner-loop (nested) cross-validation
procedure in the TCP, MDD and SINGER datasets. Although the data
from the TCP and MDD datasets were acquired from multiple sites,
the number of sites was much smaller (2 and 5, respectively) than that
of the ABCD and ADNI datasets. We were therefore unable to use the
leave-some-site-out cross-validation strategy because that would
reduce the training set size by too much. We therefore ran a tenfold
nested cross-validation strategy (similar to the HCP). However, we
regress sites from the target phenotype in the training set, which
were then applied to the test set. In other words, our prediction was



performed on the residuals of phenotypes after site regression. Site
regression was unnecessary for the SINGER dataset as the data were
collected from only a single site. The rest of the prediction workflow
was the same as the HCP dataset, except for the number of repetitions.
As TCP, MDD and SINGER datasets had smaller sample sizes than the
HCP dataset, the tenfold cross-validation was repeated 350 times.
The prediction accuracies were averaged across all test folds and all
repetitions.

Similar to the HCP, the analyses were repeated with different num-
bers of training participants, ranging from 200 to 1,600 ABCD (rest)
participants (inintervals of 200). Together with the full training set size
of approximately 1,800 participants, there were 9 different training set
sizes. The whole procedure was repeated with different values of T. As
there were10 values of Tin the ABCD (rest) dataset, there werein total
10 x 9 values of prediction accuracies for each phenotype. In the case
of ABCD (task), the sample size was smaller with maximum training
set size of approximately 1,600 participants, so there were only eight
different training set sizes.

The ADNI and SINGER datasets had less participants than the HCP
dataset, sowe decided to sample the training set size more finely. More
specifically, we repeated the analyses by varying the number of training
participants from the minimum sample size of 100 to the maximum
sample size in intervals of 100. For SINGER, the full training set size is
around 580 participants, so there were 6 different training set sizesin
total (100,200,300, 400, 500 and ~-580). For ADNI, the full training
set size is around 530, so there were also 6 different training set sizes
intotal (100,200,300, 400, 500 and ~530).

Finally, TCP and MDD datasets were the smallest, so the training
set size was sampled even more finely. More specifically, we repeated
the analyses by varying the number of training participants from the
minimum sample size of 50 to the maximum sample size in intervals
of 25. For TCP, the full training set size is ~175, so there 6 training set
sizes in total (50, 75,100, 125, 150 and 175). For MDD, the full training
set size is ~258, so there 10 training set sizes in total (50, 75,100, 125,
150,175,200, 225,250 and 258).

Current best MRI practices suggest that the model hyperparameter
should be optimized™, so in the current study, we did not consider
the case where the hyperparameter was fixed. As an aside, we note
that for all analyses, the best hyperparameter was selected using
a tenfold cross-validation within the training set. The best hyper-
parameter was then used to train the model on the full training set.
Thus, the full training set was used for hyperparameter selection
and for training the model. Furthermore, we needed to select only
one hyperparameter, while training the model required fitting many
more parameters. We therefore do not expect the hyperparameter
selectionto be more dependent onthe training set size than training
the actual modelitself.

We also note that our study focused on out-of-sample prediction
within the same dataset, but did not explore cross-dataset prediction™.
For predictive models to be clinically useful, these models must gen-
eralize to completely new datasets. The best way to achieve this goal
isby training models from multiple datasets jointly, so as to maximize
the diversity of the training data’’>. However, we did not consider
cross-dataset prediction in the current study because most studies
arenot designed with the primary aim of combining the collected data
with other datasets.

Afulltable of predictionaccuracies for every combination of sample
size and scan time per participant is provided in the Supplementary
Information.

Fitting the logarithmic model

By plotting prediction accuracy against total scan duration (number of
training participants x scan duration per participant) for each pheno-
typic measure, we observed diminishing returns of scan time (relative
to sample size), especially beyond 20 min per participant.

Furthermore, visual inspection suggests that a logarithmic curve
might fit well to each phenotypic measure when scan time per par-
ticipant is 20 min or less. To explore the universality of a logarithmic
relationship between total scan duration and prediction accuracy, for
each phenotypic measure p, we fitted the function y, = z,log,(t,) + k,,,
where y, was the prediction accuracy for phenotypic measure p, and
t, is the total scan duration. z, and k, were estimated from data by
minimizing the square error, yielding Z,and IEP.

In addition to fitting the logarithmic curve to different phenotypic
measures, the fitting can also be performed with different prediction
accuracy measures (Pearson’s correlation or COD) and different predic-
tive models (KRR and LRR). Assuming the datapoints are well explained
by thelogarithmic curve, the normalized accuracies (yp - IEP)/ép should
follow a standard log,(¢) curve across phenotypic measures, prediction
accuracies, predictive models and datasets. For example, Supplemen-
tary Fig. 9ashows the normalized prediction performance of the cog-
nitive factors for different prediction accuracy measures (Pearson’s
correlation or COD) and different predictive models (KRR and LRR)
across HCP and ABCD datasets.

Here we have chosen to use KRR and linear regression because
previous studies have shown that they have comparable prediction
performance, and also exhibited similar prediction accuracies as
several deep neural networks'®*, Indeed, a recent study suggested
thatlinear dynamical models provide a better fit to resting-state brain
dynamics (as measured by fMRI and intracranial electroencephalo-
gram) than nonlinear models, suggesting that, due to the challenges
of in vivo recordings, linear models might be sufficiently powerful
to explain macroscopic brain measurements. However, we note
that, in the current study, we are not making a similar claim. Instead,
our results suggest that the trade-off between scan time and sam-
ple size are similar for different regression models, and phenotypic
domains, scanners, acquisition protocols, racial groups, mental dis-
orders, age groups, as well as resting-state and task-state functional
connectivity.

Fitting the theoretical model

We observed that sample size and scan time per participant did not
contribute equally to prediction accuracy, with sample size having a
more important role than scan time. To explain this observation, we
derived a mathematical relationship relating the expected predic-
tion accuracy (Pearson’s correlation) between noisy brain measure-
ments and non-brain-imaging phenotype with scan time and sample
size.

Based on a linear regression model with no regularization and
assumptions including (1) stationarity of fMRI (that is, autocorrela-
tion in fMRI is the same at all timepoints), and (2) prediction errors
are uncorrelated with errors in brain measurements, we found that

A 1
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where E(p)is the expected correlation between the predicted pheno-
type estimated from noisy brain measurements and the observed
phenotype. K, is related to the ideal association between brain meas-
urements and phenotype, attenuated by phenotypic reliability. K is
related to the noise-free ideal association between brain measurements
and phenotype. K is related to brain-phenotype prediction errors due
to brain measurement inaccuracies. Full derivations are provided in
Supplementary Methods1.1and 1.2.

On the basis of the above equation, we fitted the following func-

. _ 1 . . .
tiony, =Ko p W,whereypls the predictionaccuracy for

phenotypic measure p, Nis the sample size and T'is the scan time per
participant. K, K, ,and K, , were estimated by minimizing the mean
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squared error between the above function and actual observation of
Y, using gradient descent.

Non-stationarity analysis

In the original analysis, FC matrices were generated with increasing
time T based on the original run order. To account for the possibility
of fMRI-phenotype non-stationarity effects, werandomized the order
in which the runs were considered for each participant. As both the
HCP and ABCD datasets contained 4 runs of resting-fMRI, we gener-
ated FC matrices from all 24 possible permutations of run order. For
each cross-validation split, the FC matrix for a given participant was
randomly sampled from1ofthe 24 possible permutations. We note that
therandomization wasindependently performed for each participant.

To elaborate further, let us consider an ABCD participant with the
originalrunorder (runl,run2,run3,run4). Eachrunwas5minlong.In
the original analysis, if scan time Twas 5 min, then we used all the data
fromrun1tocompute FC.If scantime Twas10 min, thenwe used run1
and run 2 to compute FC. If scan time 7 was 15 min, then we used runs
1,2 and 3 to compute FC. Finally, if scan time 7was 20 min, we used all
4 runs to compute FC.

Onthe other hand, after run randomization, for the purpose of this
exposition, let us assume that this specific participant’srun order had
becomerun3,run2,run4,runl.Inthissituation, ifthe scan time Twas
5 min, then we used all data from run 3 to compute FC. If scantime T
was 10 min, then we used run 3 and run 2 to compute FC. If scan time
Twas 15 min, then we used runs 3, 2 and 4 to compute FC. Finally, if T
was 20 min, we used all 4 runs to compute FC.

Optimizing within a fixed fMRIbudget

To generate Extended Data Fig. 6, we note that given a particular
scan cost per hour S and overhead cost per participant O, the total
budget for scanning N participants with 7T min per participant is
givenby (7/60 x S + 0) x N. Thus, given a fixed fMRI budget (for exam-
ple, US$1 million), scan cost per hour (for example, US$500) and
overhead cost per participant (for example, US$500), we increase
scantime Tin1minintervals from1to 200 and, for each value of T,
we can find the largest sample size N, such that the scan costs stayed
within the fMRI budget. For each pair of sample size N and scan time
T, we can then compute the fraction of maximum accuracy based on
Fig.4a.

Optimizing to achieve a fixed accuracy

To generate Figs. 4b,c, 5 and 6, suppose we want to achieve 90% of
maximum achievable accuracy, we can find all pairs of sample size and
scan time per participant along the 0.9 black contour line in Fig. 4a.
For every pair of sample size N and scan time T, we can then compute
the study cost given a particular scan cost per hour S (for example,
US$500) and a particular overhead cost per participant O (for example,
US$1,000):(7/60 x S+ 0) x N. The optimal scan time (and sample size)
with the lowest study cost can then be obtained.

Brain-wide association reliability
To explore thereliability of univariate brain-wide association analyses
(BWAS)', we followed a previously established split-half procedure™".
Let us illustrate the procedure using the HCP dataset (Supple-
mentary Fig. 20a). We began with the full set of participants, which
were then divided into ten folds (Supplementary Fig. 20a (first row)).
We note that care was taken so siblings were not split across folds,
so the ten folds were not exactly the same sizes. The ten folds were
divided into two non-overlapping sets of five folds. For each set of
five foldsand each phenotype, we computed the Pearson’s correlation
between each RSFC edge and phenotype across participants, yield-
ing a 419 x 419 correlation matrix, which was then converted into a
419 x 419 ¢t-statistic matrix. Split-half reliability between the (lower
triangular portions of the symmetric) ¢-statistic matrices from the two

sets of five folds was then computed using the intraclass correlation
formula™®,

The above analysis was repeated with different sample sizes achieved
by subsampling each fold (Supplementary Fig. 20a (second and third
rows)). The split-half sample sizes were subsampled from 150 to 350
(inintervals of 50). Together with the full sample size of approximately
800 participants (corresponding to a split-half sample size of around
400), there were 6 split-half sample sizes corresponding to 150, 200,
250,300,350 and 400 participants.

The whole procedure was also repeated with different values of T.
Astherewere 29 values of T, there were in total 29 x 6 univariate BWAS
split-halfreliability values for each phenotype. To ensure robustness,
the above procedure was repeated 50 times with different split of the
participantsinto10 folds to ensure stability (Supplementary Fig. 20a).
The reliability values were averaged across all 50 repetitions.

The same procedure was followed in the case of the ABCD dataset,
except as previously explained, the ABCD participants were divided
into ten site-clusters. Thus, the split-half reliability was performed
between two sets of five non-overlapping site-clusters. In total, this
procedure was repeated 126 times as there were 126 ways to divide 10
site-clusters into two sets of 5 non-overlapping site-clusters.

Similar tothe HCP, the analyses were repeated with different numbers
of split-half participants, ranging from 200 to 1,000 ABCD participants
(inintervals of 200). Together with the full training set size of approxi-
mately 2,400 participants (corresponding to a split-half sample size of
approximately 1,200 participants, there were 6 split-half sample sizes,
correspondingto 200,400, 600,800,1,000,1,200.

Thewhole procedure was also repeated with different values of 7. As
there were 10 values of T'in the ABCD dataset, there werein total 10 x 6
values univariate BWAS split-halfreliability values for each phenotype.

Previous studies have suggested the Haufe-transformed coefficients
from multivariate prediction are significantly more reliable than uni-
variate BWAS™", We therefore repeated the above analyses by replacing
BWAS with the multivariate Haufe-transform.

Afulltable of split-half BWAS reliability for each given combination
of sample size and scan time per participant is provided in the Sup-
plementary Information.

Statistical analyses

Supplementary Tables 1-3 summarize all quantifications and statistical
analyses performedinthis study. When statistical tests were performed,
multiple-comparison correction was performed within each result sec-
tion using Benjamini-Yekutieli FDR correction with g < 0.05 (ref. 74).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The prediction accuracies for each phenotype, sample size N and
scantime Tinall nine resting and task fMRI datasets are publicly avail-
able (https://github.com/ThomasYeolLab/CBIG/tree/master/stable_
projects/predict_phenotypes/00i2024_ME). The raw data for HCP
(https://www.humanconnectome.org/), ABCD (https://abcdstudy.
org/), TCP (https://openneuro.org/datasets/ds005237 and https://
nda.nih.gov/edit_collection.html?id=3552) and ADNI (https://ida.loni.
usc.edu/) are publicly available. ABCD parcellated time courses canbe
found on NDA (https://doi.org/10.15154/1528763). HCP and TCP parcel-
lated time courses can be found at Zenodo” (https://doi.org/10.5281/
zenodo.15300607). The ADNI user agreement does not allow usto share
the ADNI derivatives. The SINGER dataset can be obtained through
a data-transfer agreement (https://medicine.nus.edu.sg/macc-2/
projects/singer/). The MDD dataset is available on request from H.L.
(hesheng@biopic.pku.edu.cn).
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Code availability

Codefor this study is publicly available in the GitHub repository main-
tained by the Computational Brain Imaging Group (https://github.com/
ThomasYeolLab/CBIG). Processing pipelines of the fMRI data are avail-
able at GitHub (https://github.com/ThomasYeolLab/CBIG/tree/master/
stable_projects/preprocessing/CBIG_fMRI_Preproc2016). Analyses
were conducted in MATLAB (2018b) and Python 3.7. Code specific to
theanalysesis available at GitHub (https://github.com/ThomasYeoLab/
CBIG/tree/master/stable_projects/predict_phenotypes/00i2024_ME).
Code related to this study was reviewed by S.Z., TW.K.T. and R.K. to
reduce the chance of coding errors.
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Extended DataFig.1|Prediction workflow for the HCP dataset. Participants
were splitinto 10 folds. One fold was set aside to be the test set. The remaining
folds comprised the training set. Cross-validation was performed on the
trainingsettoselectthe best hyperparameter. The best hyperparameter was
thenusedtofitafinal model fromthe full training set, which was then used to
predict phenotypesinthetestset. To vary training set size, each training fold
was subsampled and the whole inner-loop nested cross-validation procedure
wasrepeated with the resulting smaller training set. Asshownin the panel, the
testset remained the same across different training set sizes, so that prediction
accuracies were comparable across different sample sizes. Each fold took a
turnto bethe testset (i.e., 10-fold inner-loop nested cross-validation) and the
procedure wasrepeated with different amounts of fMRI data per participant T
(notshownin panel). For stability, the entire procedure was repeated 50 times
and averaged. A similar workflow was used in the ABCD dataset (see Methods,
“Prediction workflow”). We note thatin the case of HCP, care was taken so
siblings were not split across folds, whilein the case of ABCD, participants from
the same site were not splitacross folds.
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Extended DataFig.2|Relationship between predictionaccuracy and total
scanduration (samplesize x scan time per participant). Scatter plot showing
normalized prediction accuracy of the two cognitive factor scores and 34 other

phenotypes versus total scan duration, ignoring databeyond 20 min of scan
time per participant. Black curve shows the logarithmic fit. There are 2280 data
points (dots) in this figure.
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scanduration for anexemplary phenotype with low predictionaccuracy. There  increasing function.d.Same as cbutusing HCP (instead of ABCD) phenotypes.

are90datapoints (dots) inthis plot. c.Scatter plot of theoreticalmodelgoodness-  Forcandd, Spearman’s correlation was computed based on 33 ABCD phenotypes
of-fit (coefficient of determination or COD) against prediction accuracies of and 42 HCP phenotypesrespectively. P values were obtained viaa permutation

different ABCD phenotypes. COD (also known as R?) is a measure of explained test (see Supplementary Table1).

variance. Here, we considered phenotypes whose prediction accuracies
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against total scan duration for the “Anger: Aggression” phenotype in the HCP
dataset. There are 174 data points (dots) in this plot. Despite relatively high
accuracy, predictionaccuracy increases with larger sample sizes (Spearman’s
p=1.00), while extending scan duration does not generate a similarly consistent
effect (Spearman’s p = 0.21; Supplementary Table 1). b. Scatter plot of prediction
accuracy against total scan duration for the “Anger: Aggression” phenotype in
the HCP dataset after randomizing fMRIrun order for each participant. There
arel74 data points (dots) in this plot. Observe that the prediction accuracy now
adheres strongly to the theoretical model (Supplementary Table1). c. Box plots
showing goodness of fit to theoretical model before and after randomizing
fMRIrunorder.Here, we considered all phenotypes whose predictionaccuracies
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(Pearson’sr) were positivein atleast 90% of all combinations of Nand 7, so we
ended up with33 ABCD and 42 HCP phenotypes. Therefore, each ABCD boxplot
contains 33 data points, while each HCP boxplot contains 42 datapoints.
Foreachboxplot, the horizontal line indicates the median across 33 ABCD
phenotypes or 42 HCP phenotypes. The bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. Outliers are defined as
datapointsbeyond1.5times theinterquartile range. The whiskers extend to
the most extreme data points not considered outliers. Two-tailed paired-
sample t-tests were used to test whether COD was improved after run
randomization. P values were 8.80e-5(ABCD) and 2.23e-7 (HCP). *indicates
that goodness-of-fit was significantly different after FDR correction with
q<0.05.More details of statistical tests can be found in Supplementary Table 1.
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Extended DataFig.7 |Bootstrapped histograms of most cost-effective scan
times. a. Bootstrapped histogram of the most cost-effective scan time averaged
across nine datasets. This panel supports the resultsin Fig.4c.b. Bootstrapped
histogram of the most cost-effective scan time for the ABCD resting-fMRI
dataset. c. Bootstrapped histogram of the most cost-effective scan time for the
HCP dataset. d. Bootstrapped histogram of the most cost-effective scan time
for the SINGER dataset. e. Bootstrapped histogram of the most cost-effective
scantime for the TCP dataset. f. Bootstrapped histogram of the most cost-
effective scantime for the MDD dataset. g. Bootstrapped histogram of the
most cost-effective scan time for the ADNI dataset. h. Bootstrapped histogram
ofthe most cost-effective scan time for the ABCD MID task-fMRI dataset.

i. Bootstrapped histogram of the most cost-effective scan time for the ABCD
n-back task-fMRI dataset. j. Bootstrapped histogram of the most cost-effective

scantime for the ABCD SST task-fMRI dataset. k. Bootstrapped histogram of
the most cost-effective scan time for the HCP one-session analysis. l. Bootstrapped
histogram of the most cost-effective scan time for the HCP two-session analysis.
btolsupporttheresultsinFig.5.m.Bootstrapped histogram of the most
cost-effective scan time for the ABCD whole-brain FC analysis. n. Bootstrapped
histogram of the most cost-effective scan time for the ABCD subcortical-to-
whole-brain FC analysis. 0. Bootstrapped histogram of the most cost-effective
scan time for the HCP whole-brain FC analysis. p. Bootstrapped histogram of
the most cost-effective scan time for the HCP subcortical-to-whole-brain FC
analysis. mto psupporttheresultsinFig. 6a. Each panel contains 1000
bootstrapped samples. The 95% confidence intervals are shown by the red
dashedlines. Numbersinbracketsindicate the number of phenotypes. Details
ofbootstrap are foundin Supplementary Table1.
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Extended DataFig. 8| Variation across phenotypes & scan parameters.
a.Costinefficiency as afunction of scan time for various phenotypic domains
across nineresting-fMRIand task-fMRIdatasets. Only for this plot, the positron
emission tomography (PET) curve used amore realistic overhead cost of
US$5,000 or US$10,000 per participantinstead of US$500 or US$1,000

used for other phenotypes. Arrows indicate most cost-effective scan times.
Numbersinbracketsindicate number of phenotypes. For visualization, curves
arenormalized by subtracting the costinefficiency of the best possible fixed
scantime (of each curve), sothe best possible fixed scantimeis centred at zero.
b. Optimal scantimeas a function of phenotypic predictionaccuracies. We
sorted the maximum prediction accuracies (based on resting-state FC) of 19
HCPand17 ABCD phenotypesinto threebins. ¢. Optimal scantime as afunction
of phenotypictest-retest reliability. This analysis was obtained by considering

41HCP participants, where the same phenotypic measures were collected
twice (several months apart), allowing us to estimate phenotypic test-retest
reliability. d. Optimal scan time as a function of repetition time (TR). e. Optimal
scantimeas afunction of voxel size. f. Optimal scan time as a function of MRI
acquisition. SE-SB: single-echo single-band; SE-MB: single-echo multi-band;
ME-MB: multi-echo multi-band.bto fonly considered resting-state FC. The
ADNI dataset was excluded fromd to fbecauseitincluded bothsingle-band
and multi-band datawith different TRs and voxel sizes. Each boxplotinbtof
contains12 data points correspondingto the12 conditions we considered.
Horizontal lines indicate the medians, boxes represent the interquartile range
(IQR, from the 25th to 75th percentile), and whiskers extend to the most extreme
data points not considered outliers (within 1.5% IQR).
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Extended Data Table 1| The sample size and the maximum
amount of scan time of each dataset

Dataset Sample Size (N) Scan Time (T)
HCP 792 57m 36s
ABCD-rest 2565 20m
SINGER 642 9m 56s
TCP 194 26m 2s
MDD 287 23m 12s
ADNI 586 9m
ABCD-MID 2262 10m 44s
ABCD-NBACK 2262 9m 39s
ABCD-SST 2262 12m 39s




Extended Data Table 2 | Optimal scan time to maximize
prediction accuracy given different overhead costs per
participant, scan costs per hour and total fMRI budgets

Overhead cost Scan cost Total fMRI budget
per participant perhour | 100K | 250K 1M 2.5M | 10M | 25M | 100M
500 40.0 | 400 | 345 | 325 | 315 | 305 | 305
1000 300 [ 255 | 245 | 225 [ 220 [ 215 | 215
500 1500 20.0 [ 200 | 200 | 185 [ 180 [ 175 | 175
2000 195 | 180 | 16.0 | 16.0 | 155 [ 155 | 150
2500 180 | 155 | 15.0 | 145 | 140 | 135 | 135
500 80.0 | 674 | 56.4 | 505 | 445 | 44.0 | 43.0
1000 40.0 | 400 | 385 [ 350 | 315 | 31.0 | 305
1000 1500 40.0 | 330 | 305 [ 285 | 255 | 250 | 25.0
2000 30.0 [ 28.0 | 255 | 240 | 225 [ 22,0 | 215
2500 240 | 26.0 | 240 | 215 | 200 [ 195 | 19.0
500 159.8 | 100.9 | 869 | 764 | 664 | 624 | 609
1000 799 | 674 | 564 | 505 | 455 | 445 | 43.0
2000 1500 529 | 624 | 49.0 | 405 [ 375 | 365 | 355
2000 40.0 | 470 | 400 | 375 | 325 | 315 | 305
2500 375 | 375 | 350 | 320 | 290 | 28.0 | 275
500 322.7 | 233.3 | 159.3 | 133.4 | 1109 | 1029 | 96.9
1000 2097 | 199.8 | 1284 | 944 | 799 | 744 | 69.9
5000 1500 199.8 | 1329 | 854 | 784 | 634 | 60.0 | 559
2000 149.9 | 99.9 | 804 | 654 | 553 [ 514 | 49.0
2500 119.9 | 799 | 644 | 564 | 505 | 455 | 44.0
500 500.0 | 466.5 | 299.7 | 228.3 | 180.8 | 151.3 | 140.9
1000 399.6 | 282.2 | 189.3 | 149.9 | 112.9 | 110.9 | 100.9
10000 1500 266.2 | 187.8 [ 171.3 | 1259 [ 99.9 | 904 | 81.9
2000 199.8 | 168.3 | 1284 | 116.4 | 844 | 774 | 699
2500 159.8 | 134.9 | 112.9 | 949 | 804 | 69.4 | 634

This table expands Extended Data Fig. 6 for a wider range of fMRI budgets, scan costs per
hour and overhead costs per participant. Entries in the table show the optimal scan time in

minutes.
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis FreeSurfer 5.3.0; FSL 5.0.8; MATLAB (2018b); Python 3.7. Code for this study is publicly available in the GitHub repository maintained by the
Computational Brain Imaging Group (https://github.com/ThomasYeolab/CBIG). Processing pipelines of the fMRI data can be found here
(https://github.com/ThomasYeolab/CBIG/tree/master/stable_projects/preprocessing/CBIG_fMRI_Preproc2016). Code specific to the analyses
in this study can be found here (https://github.com/ThomasYeolab/CBIG/tree/master/stable_projects/predict_phenotypes/00i2024_ME).
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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nda.nih.gov/edit_collection.html?id=3552) and ADNI (https://ida.loni.usc.edu/) are publicly available. The ADNI user agreement does not allow us to share the ADNI
derivatives. The SINGER dataset can be obtained via a data-transfer agreement (https://medicine.nus.edu.sg/macc/projects/singer/). The MDD dataset is available
upon request to co-author HL (hesheng@biopic.pku.edu.cn).

The prediction accuracies for each phenotype, sample size N, and scan time T in all six datasets are publicly available (https://github.com/ThomasYeolab/CBIG/tree/

master/stable_projects/predict_phenotypes/00i2024_ME). ABCD parcellated time courses can be found on NDA (dx.doi.org/10.15154/1528763). HCP and TCP
parcellated time courses can be found on Zenodo (dx.doi.org/10.5281/zenodo.15300607).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender HCP sex distribution: 371 Male / 421 Female
ABCD sex distribution: 1251 Male / 1314 Female
SINGER sex distribution: 309 Male / 333 Female
TCP sex distribution: 81 Male / 110 Female / 3 Self declared
MDD sex distribution: 101 Male / 186 Female
ADNI sex distribution: 278 Male / 308 Female

Reporting on race, ethnicity, or ' Information related to race and ethnicity was not used in this study.
other socially relevant
groupings

Population characteristics HCP: 792 young adult (ages 22-35) participants were recruited from families with twins and non-twin siblings.
ABCD: 2565 children (ages 9-10)
SINGER: 642 adults aged 60-80 at risk of cognitive impairment and dementia
TCP: 194 adults (ages 18-70) meeting diagnostic criteria for a broad range of psychiatric illnesses and a healthy comparison
group
MDD: 287 participants who meet the diagnostic criteria of DSM-5(Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition) for depression disorder without psychotic symptoms, and currently experiencing a recurrence episode.
ADNI: 586 participants aged 55-90 years, consisting of cognitively normal individuals, those with mild cognitive impairment
(MCl), and Alzheimer's disease patients, undergoing extensive neuroimaging and cognitive assessments.

Recruitment Recruitment was carried out by the respective studies.

Ethics oversight The HCP data collection was approved by a consortium of institutional review boards (IRBs) in the United States and Europe,
led by Washington University in St Louis and the University of Minnesota (WU-Minn HCP Consortium).

Most ABCD research sites relied on a central IRB at the University of California, San Diego for the ethical review and approval
of the research protocol, with a few sites obtaining local IRB approval.

The SINGER study has been approved by the National Healthcare Group Domain-Specific Review Board and is registered
under ClinicalTrials.gov (ID: NCT05007353) with written informed consent obtained from all participants before enrolment
into the study.

Participants from the TCP study were provided written informed consent following guidelines established by the Yale
University and MclLean Hospital (Partners Healthcare) IRBs.

The MDD dataset was collected from multiple rTMS clinical trials, and all data were obtained at the pretreatment stage.
These trials include ChiCTR2300067671 (approved by the Institutional Review Boards of Beijing Anding Hospital, Henan
Provincial People's Hospital, and Tianjin Medical University General Hospital); NCT05842278, NCT05842291, and
NCT06166082 (all approved by the IRB of Beijing HuiLongGuan Hospital); and NCT06095778 (approved by the IRB of the
Affiliated Brain Hospital of Guangzhou Medical University).

The ADNI study was approved by the IRBs of all participating institutions with informed written consent from all participants
at each site.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.
Study description Quantitative cross-sectional study where we train and test predictive models to predict behavioral outcomes from neuroimaging data

Research sample To evaluate the robustness of our theoretical model, we considered a diverse collection of datasets (HCP, ABCD, SINGER, TCP, MDD
and ADNI) that span multiple fMRI sequences (single-echo single-band, single-echo multi-band, multi-echo multi-band), coordinate
systems (fsLR, fsaverage, MNI152), racial groups (Western and Asian populations), mental disorders (healthy, neurological and
psychiatric) and age groups (children, young adults and elderly).

Sampling strategy For each dataset, we exclude participants who meet the exclusion criteria (See 'Data exclusions' section below). As a result, the
current sample reflects the maximum available sample size for this study.

Data collection All neuroimaging data were collected through various MRI scanners available at different scanning sites. Behavioral measures were
collected based on procedures that were specific to each behavioral test.
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Timing HCP: The Human Connectome Project S1200 release started in 2012 and finished collecting data in 2016.
ABCD: The data collection for this public dataset is still on-going (however, our lab is not involved in the collection in any form). We
first accessed the data in 2018.
SINGER: The data collection for this dataset is still on-going (however, our lab is not involved in the collection in any form). We first
accessed the data in 2023.
TCP: The data collection for this dataset began in 2018 and ended in 2024.
MDD: The data collection for this dataset is still on-going (however, our lab is not involved in the collection in any form). We first
accessed the data in 2024.
ADNI: The data collection for this dataset is still on-going (however, our lab is not involved in the collection in any form). We first
accessed the data in 2023.

Data exclusions HCP: We excluded 161 participants who did not have at least 40 minutes of uncensored data or did not have the full set of the 59
non-brain-imaging phenotypes from an initial sample of 953 participants.
ABCD: We excluded 2695 participants who did not have at least 15 minutes of uncensored data or did not have the full set of the 37
non-brain-imaging phenotypes from an initial sample of 5260 participants.
SINGER: We excluded 117 participants who did not have at least 10 minutes of uncensored data or did not have the full set of the 19
non-brain-imaging phenotypes from an initial sample of 759 participants.
TCP: We excluded 47 participants who did not have at least 26 minutes of uncensored data or did not have the full set of the 19 non-
brain-imaging phenotypes from an initial sample of 241 participants.
MDD: We excluded 19 participants who did not have at least 23 minutes of uncensored data or did not have the full set of the 20
non-brain-imaging phenotypes from an initial sample of 306 participants.
ADNI: We excluded 182 participants who did not have at least 9 minutes of uncensored data or did not have the full set of the 6 non-
brain-imaging phenotypes from an initial sample of 768 participants.

More details can be found in the Methods section of the paper (Datasets, phenotypes & participants).

Non-participation We are not aware of how many participants may have dropped out as we are not involved in the data collection process. No data
was collected for the current study.

Randomization We did not allocate participants into different experimental groups because they all underwent the same experimental conditions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Resting-state functional imaging

HCP: Each participant underwent 4 runs of resting-state functional imaging with a duration of 14.4 minutes.
ABCD: Each participant underwent 4 runs of resting-state functional imaging with a duration of 5 minutes.
SINGER: Each participant underwent 1 run of resting-state functional imaging with a duration of 10 minutes.
TCP: Each participant underwent 4 runs of resting-state functional imaging with a duration of 6.5 minutes.
MDD: Each participant underwent 4 runs of resting-state functional imaging with a duration of 6 minutes.
ADNI: Each participant underwent 1 run of resting-state functional imaging with a duration of 9 minutes.

Behavioral performance measures  No behavioral performance measures are collected during resting-state functional imaging.

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition
Diffusion MRI [ Used

Preprocessing

Preprocessing software
Normalization

Normalization template

Noise and artifact removal

Functional
3T

HCP: All participants were scanned on a customized Siemens 3T Skyra using a multi-band sequence. Each fMRI run was
acquired with a repetition time (TR) of 0.72s at 2mm isotropic resolution and lasted for 14.4 min.

ABCD: Multiple scanners of different makes were used, so the sequences were variable, but each fMRI scan was in 2.4
mm isotropic resolution with a TR of 800 ms.

SINGER: The following scanning parameters were used: TR=1000, TE=12/29.75/47.5, voxel size=3x3x3mm.

TCP: The following scanning parameters were used: TR = 800 milliseconds, TE = 37 milliseconds, flip angle = 52°, and
voxel size =2mm. A multi-band acceleration factor of 8 was applied. An auto-align pulse sequence protocol was used to
align the acquisition slices of the functional scans parallel to the anterior commissure-posterior commissure (AC-PC)
plane of the MPRAGE and centered on the brain.

MDD: Rs-fMRI was acquired with an echo planar imaging (EPI) pulse sequence (TR=3000ms, TE=30ms, flip angle=90°,
FOV=240x240, 80x80 matrix, 50 slices, voxel size=3x3x3mm).

ADNI: Multiple scanners of different makes were used, so the sequences were variable

Whole-brain coverage

Not used

FreeSurfer 5.3.0; FSL 5.0.8
Non-linear volumetric and surface projection

HCP: fsLR surface
ABCD/SINGER/MDD/ADNI: FreeSurfer fsaverage6 surface
TCP: MNI152

HCP: Denoising was done by ICA-FIX, we additionally regressed out the global signal

ABCD: We regressed out the global signal, six motion correction parameters, averaged ventricular signal, averaged white
matter signal, and their temporal derivatives (18 regressors in total)

SINGER:We regressed out the global signal, six motion correction parameters, averaged ventricular signal, averaged white
matter signal, and their temporal derivatives (18 regressors in total)

TCP: Denoising was done by ICA-FIX, we additionally regressed out the global signal

MDD: We regressed out the global signal, six motion correction parameters, averaged ventricular signal, averaged white
matter signal, and their temporal derivatives (18 regressors in total)
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ADNI:We regressed out the global signal, six motion correction parameters, averaged ventricular signal, averaged white
matter signal, and their temporal derivatives (18 regressors in total)

Volume censoring HCP: Motion outlier frames (FD > 0.2mm, DVARS > 75), along with one volume before and two volumes after, were marked
as outliers and subsequently censored.
ABCD: Motion outlier frames ( FD > 0.3 mm, DVARS > 50), along with one volume before and two volumes after, were
marked as outliers and subsequently censored.
SINGER:Motion outlier frames ( FD > 0.3 mm, DVARS > 60), along with one volume before and two volumes after, were
marked as outliers and subsequently censored.
TCP: No censoring
MDD: No censoring
ADNI: No censoring

Statistical modeling & inference

Model type and settings Predictive

Effect(s) tested Prediction of behavioral outcomes from functional connectivity derived from resting-state fMRI.

Specify type of analysis: Whole brain || ROI-based [ ] Both

Statistic type for inference Cluster-wise statistics are not applicable for our study as our analyses only utilize functional connectivity measures.
(See Eklund et al. 2016)

Correction Multiple comparisons were corrected using the Benjamini—Yekutieli false discovery rate (FDR) procedure with g < 0.05.

Models & analysis

n/a | Involved in the study
|:| |Z Functional and/or effective connectivity

|:| Graph analysis

|:| |Z Multivariate modeling or predictive analysis
Functional and/or effective connectivity Pearson's correlation

Multivariate modeling and predictive analysis = We used kernel ridge regression and linear ridge regression. Model performance was evaluated with
Pearson's correlation and coefficient of determination.
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