001     1044448
005     20250930132711.0
024 7 _ |a 10.1002/smll.202505254
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03202
|2 datacite_doi
024 7 _ |a 40641267
|2 pmid
024 7 _ |a WOS:001525540600001
|2 WOS
037 _ _ |a FZJ-2025-03202
082 _ _ |a 620
100 1 _ |a Leopold, Maike
|0 P:(DE-Juel1)194101
|b 0
|u fzj
245 _ _ |a Importance of Fluorine in High Voltage Electrolytes for LNMO||SiGr Cell Chemistry
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758541728_8536
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium nickel manganese oxide (LNMO) and silicon/graphite (SiGr) are promising active materials for high voltage lithium ion batteries attributed to the high operating potential versus Li|Li+ of LNMO and the high specific discharge capacity of silicon. However, this cell chemistry exhibits rapid capacity fading, primarily attributed to electrolyte decomposition at the high operating voltage of 4.9 V. Here, a fluorinated electrolyte containing lithium hexafluorophosphate as conducting salt, as well as fluoroethylene carbonate and methyl (2,2,2-trifluoroethyl) carbonate as electrolyte solvents is introduced. The influence of the selected solvents on the interphase formation and galvanostatic cycling performance is analyzed using complementary electrochemical, spectroscopic, and safety-related techniques. The presence of fluorinated solvents enables a high oxidative stability of an electrolyte up to 5.0 V versus Li|Li+ and effective interphase formation. In comparison to cells with non-fluorinated electrolytes, the galvanostatic cycling performance demonstrates a considerable improvement, leading to a doubling of the achievable cycle life. Roll-over failure observed in the electrolyte with non-fluorinated solvents could be effectively suppressed for over 300 cycles and the resulting electrolyte formulation with fluorinated solvents is non-flammable. Additionally, by fine-tuning the electrolyte formulation, the extent of acetylcholinesterase inhibition, an indication of substance toxicity of the aged electrolyte could be reduced.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 1
|u fzj
700 1 _ |a Muschiol, Elisabeth Christine
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wölke, Christian
|0 P:(DE-Juel1)176954
|b 3
|u fzj
700 1 _ |a Yan, Peng
|0 P:(DE-Juel1)186842
|b 4
|u fzj
700 1 _ |a Brüning, Kai
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Esselen, Melanie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|u fzj
700 1 _ |a Cekic-Laskovic, Isidora
|0 P:(DE-Juel1)171204
|b 9
|e Corresponding author
773 _ _ |a 10.1002/smll.202505254
|g p. 2505254
|0 PERI:(DE-600)2168935-0
|n 35
|p 2505254
|t Small
|v 21
|y 2025
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1044448/files/Small%20-%202025%20-%20Leopold%20-%20Importance%20of%20Fluorine%20in%20High%20Voltage%20Electrolytes%20for%20LNMO%20SiGr%20Cell%20Chemistry.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044448
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194101
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176954
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171204
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21