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1 Summary 
 

Transdiagnostic research in psychiatry indicates substantial commonalities between mental disorders. 

The high prevalence of psychiatric comorbidity has been attributed to shared etiologies and overlapping 

alterations in brain structure and function. Yet, it remains unclear whether overlapping brain alterations 

arise from shared constraints imposed by underlying neurobiology. This thesis provides insights into 

how brain organization, particularly the spatial architecture and developmental trajectories of the cortex, 

may constrain transdiagnostic cortical alterations and susceptibility during vulnerable developmental 

periods. 

 A population-level model aimed to uncover systematically co-occurring cortical thickness (CT) 

alterations across six mental disorders (Study 1). Identified transdiagnostic co-alterations reflected 

elements of underlying connectome organization, particularly lateral prefrontal and medial-temporal 

connectivity profiles. Moreover, they were spatially organized, with prefrontal vs. temporal and sensory-

limbic vs. occipitoparietal regions exhibiting distinct co-alteration profiles. Overall, the extent to which 

any two regions exhibited similar CT alterations across disorders reflected their similarity in 

cytoarchitecture, gene expression profile, and functional task engagement. Study 1 thus provides insights 

into the spatial organization of transdiagnostic CT alterations and how the cortex’s heterogeneous 

neurobiology may guide these recurrent patterns. 

 A longitudinal neurodevelopmental model was applied in adolescents and young adults to study 

susceptibility in a period during which first psychiatric symptoms often emerge (Study 2). The model 

investigated how variation in mental well-being in response to psychosocial adversity relates to ongoing 

cortical maturation, particularly focusing on the asynchronous progression of plasticity and 

consolidation. Nuanced intracortical myelin mapping revealed that a higher rate of anterolateral 

prefrontal myelination and widespread association cortex reorganization were associated with positive 

changes in adolescents’ resilience to psychosocial adversity. Conversely, increasing susceptibility was 

related to weaker myeloarchitectonic consolidation and decreased stability of prefrontal functional 

networks. Study 2 thus revealed that the efficacy with which adolescents navigate psychosocial 

challenges varies in relation to ongoing cortical refinement processes at multiple scales. 

 The current work advances our understanding of how the cortex’s spatial and developmental 

architecture shapes the systematic organization of transdiagnostic cortical alterations. As such, cortical 

alterations relevant to dimensional psychopathology may be embedded in an intrinsic cortical coordinate 

system defined by multiple axes of neurobiological heterogeneity and protracted development. Further 

research is needed to understand potentially synchronized spatiotemporal progressions along observed 

co-alteration patterns. Moreover, findings can inspire neurodevelopmentally informed interventions 

tailored to the timing of plastic periods of brain circuits involved in navigating psychosocial challenges. 
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2 Zusammenfassung 
 

Transdiagnostische Forschungsansätze zeigen beträchtliche Gemeinsamkeiten zwischen 

psychiatrischen Erkrankungen auf. Die hohe Prävalenz von Komorbidität wird dabei auf gemeinsame 

Ätiologie und überlappende Veränderungen in der Gehirnstruktur und -funktion zurückgeführt. Die 

vorliegende Arbeit untersucht, wie die Organisation des Gehirns transdiagnostische Muster kortikaler 

Veränderungen und Variabilität während vulnerabler Entwicklungsphasen hervorbringen könnte, 

insbesondere im Hinblick auf die neurobiologische Architektur und Entwicklung des Kortex.  

 Ein populationsbasiertes Modell wurde verwendet, um systematische Zusammenhänge 

zwischen regionalen Veränderungen der kortikalen Dicke bei sechs psychiatrischen Erkrankungen zu 

erfassen (Studie 1). Regionale Veränderungen waren in ein transdiagnostisches Kovarianznetzwerk 

eingebettet. Dieses spiegelte die räumliche Organisation funktioneller Netzwerke wider, insbesondere 

lateral präfrontale und medial-temporale Konnektivität. Eine Dimensionsreduktion zeigte zudem 

unterschiedliche Kovarianzprofile zwischen präfrontalen und temporalen sowie zwischen 

sensorisch/limbischen und okzipitoparietalen Regionen auf. Generell schien der Grad, zu dem zwei 

Regionen über verschiedene Erkrankungen hinweg ähnlich betroffen waren, mit ihrer Ähnlichkeit in der 

Zytoarchitektur, im Genexpressionsprofil und in der Beteiligung an funktionellen Prozessen 

zusammenzuhängen. Ergebnisse aus Studie 1 legen deshalb nahe, dass transdiagnostische 

Veränderungen der kortikalen Dicke räumlich organisiert sind und die heterogene Neurobiologie des 

Kortex reflektieren.  

Ein längsschnittliches Modell untersuchte den Zusammenhang zwischen der Anfälligkeit 

gegenüber psychosozialen Risikofaktoren und kortikaler Reifung während eines Zeitraums, in dem 

psychiatrische Symptome oft zum ersten Mal auftreten - die Adoleszenz bis zum jungen Erwachsenen-

alter (Studie 2). Das Modell untersuchte dabei spezifisch die asynchronen Entwicklungsverläufe 

kortikaler Plastizität und Konsolidierung. Die bildgebungsbasierte Analyse intrakortikaler Myelin-

profile zeigte, dass eine stärkere Myelinisierung im anterolateralen präfrontalen Kortex sowie eine 

myeloarchitektonische Reorganisation von Assoziationskortizes mit positiven Veränderungen in der 

Resilienz von Jugendlichen assoziiert waren. Umgekehrt ging eine zunehmende Anfälligkeit mit einer 

abgeschwächten myeloarchitektonischen Konsolidierung und einer geringeren Stabilität präfrontaler 

funktioneller Netzwerke einher. Studie 2 zeigt daher eine dynamische Variabilität in der Bewältigung 

psychosozialer Herausforderungen auf, die im Zusammenhang mit vielschichtigen kortikalen 

Reifungsprozessen steht. 

Die Ergebnisse deuten darauf hin, dass transdiagnostische kortikale Veränderungen einem 

gemeinsamen, systematischen Organisationsprinzip unterliegen. Dabei scheinen kortikale 

Veränderungen in ein intrinsisches kortikales Koordinatensystem eingebettet zu sein, dessen Achsen 

durch verschiedene Skalen neurobiologischer Heterogenität und asynchroner Entwicklungsverläufe 

definiert werden. Zukünftige Forschung kann Aufschluss darüber geben, ob räumliche Muster 
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transdiagnostischer Kortexveränderungen auch zeitlich synchronisierte Prozesse widerspiegeln. 

Darüber hinaus regen die Ergebnisse Interventionen an, die bereits im Jugendalter an individuelle 

Phasen der kortikalen Plastizität angepasst werden - insbesondere in Netzwerken, die in der Bewältigung 

psychosozialer Herausforderungen involviert sind. 
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3 List of Abbreviations 
 

ADHD Attention-deficit/hyperactivity disorder 

Agr Agranular cortex 

APQ Alabama parenting questionnaire 

ASD Autism spectrum disorder 

BD Bipolar disorder 

CT Cortical thickness 

CTQ Childhood trauma questionnaire 

DAN Dorsal attention network 

DMN Default mode network 

Dys Dysgranular cortex 

ENIGMA Enhancing NeuroImaging Genetics through Meta-Analysis 

Eu-(I-III) Eulaminate cortex I-III 

FC Functional connectivity 

FPN Frontoparietal network 

GMV Grey matter volume 

HiTOP Hierarchical Taxonomy of Psychopathology 

IFG Inferior frontal gyrus 

Koni Konicortex 

LEQ Life events questionnaire 

LIM Limbic network 

MDD Major depressive disorder 

MI Maturational index 

MOPS Measure of parenting style 

MPC Microstructural profile covariance 

MRI Magnetic resonance imaging 

MT Magnetization transfer 

NSPN NeuroScience in Psychiatry Network 

OCD Obsessive compulsive disorder 

P-factor General psychopathology factor 

PFC Prefrontal cortex 

RDoC Research Domain Criteria 

ResPSF Resilient psychosocial functioning  

SCZ Schizophrenia 

SES Socio-economic status 

SM Sensorimotor network 

VAN Ventral attention network 

VIS Visual network 
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4 Introduction 
 

Mental illness is one of the leading causes of global disease burden (Arias et al., 2022). According to 

the World Health Organization, one in eight individuals currently lives with a mental disorder, placing 

a significant burden on individuals’ quality of life, societal welfare, and economic productivity (Arias 

et al., 2022; WHO, 2022). Mental health issues often surface during adolescence and young adulthood, 

a period of pronounced biopsychosocial change that prepares young individuals to live independent 

lives (Paus et al., 2008; Solmi et al., 2022). Concerningly, the morbidity and mortality burden of mental 

illness is rising across most sociodemographic groups (Kieling et al., 2024; Patel et al., 2018), 

emphasizing the current need for effective prevention and treatment strategies. A major factor impeding 

the diagnosis and etiological understanding of psychopathology is the pronounced phenomenological 

overlap between mental disorders, which can be observed across genetic, neurobiological, and clinical 

levels (Lee et al., 2019; Newson et al., 2021; Radonjic et al., 2021), as well as in epidemiological 

comorbidity (Caspi et al., 2020; Plana-Ripoll et al., 2019). Therefore, transdiagnostic research in 

psychiatry approaches the complex pathophysiology of mental disorders by identifying core 

mechanisms relevant to multiple disorders (Fusar-Poli et al., 2019). These efforts aim to elucidate 

pathways for integrative prevention and treatment strategies and may guide educational and healthcare 

practices to meet the pressing demands of today’s society. 

This thesis addresses transdiagnostic phenomena at the level of shared brain alterations. 

Specifically, I investigated how the cortex’s heterogeneous neurobiological architecture and protracted 

development may give rise to individual variability in susceptibility and transdiagnostic pathology. 

4.1 Transdiagnostic concepts in psychiatric research  

Vulnerability to mental illness reflects a complex interaction between biological, psychological, and 

environmental risk and protective factors (Hankin & Abela, 2005). This multifactorial etiology of 

mental illness substantially overlaps between different psychiatric diagnoses. Approximately 75% of 

genetic risk variants confer liability to more than one mental disorder (Anttila et al., 2018; Lee et al., 

2019). Similarly, environmental adversity is often more predictive of overall psychopathology than 

discrete symptom domains (Keyes et al., 2012; McLaughlin et al., 2020). Shared genetic and 

environmental risk factors may contribute to and interact with deviations from normative 

neurodevelopment, conferring vulnerability to psychopathology (Buckholtz & Meyer-Lindenberg, 

2012; Parkes et al., 2021). At the epidemiological level, the categorization of mental disorders is further 

challenged by high rates of psychiatric comorbidity and heterogeneity within diagnostic categories 

(Newson et al., 2021; Plana-Ripoll et al., 2019). Ultimately, having any mental disorder increases the 

risk of developing another disorder throughout the lifespan (Caspi et al., 2020). A growing research 



 

 

 

2 

avenue thus points toward unifying and parsimonious constructs of psychopathology (Caspi et al., 2014; 

Dell’Osso et al., 2019; Lahey et al., 2012). Such constructs propose continuous and dimensional 

symptom profiles, whose expression can vary in severity and cut across diagnostic categories. The 

Hierarchical Taxonomy of Psychopathology (HiTOP; Kotov et al., 2017), for instance, identifies 

hierarchically organized dimensions with families of symptoms that predictably co-occur, such as 

internalizing (e.g., depression and anxiety), externalizing (e.g., drug use and antisocial behavior), and 

thought disorder symptoms (e.g., psychosis). Moreover, a general psychopathology (p-) factor has been 

proposed to reflect an individual's propensity to develop any form of psychopathology (Caspi et al., 

2014). Such dimensional approaches suggest that each disorder may reflect a combination of graded 

expressions of disorder-specific features and a generalized, transdiagnostic vulnerability. Research 

addressing such transdiagnostic phenomena has been guided by the Research Domain Criteria (RDoC; 

Insel et al., 2010), which emphasize the integrative study of genetic, neuroscientific, and cognitive 

domains beyond symptomatic presentation. 

 

4.1.1 Toward a systems-level understanding of transdiagnostic brain alterations 

Efforts to elucidate the neurobiological basis of transdiagnostic phenomena have reported both shared 

and distinct brain alterations across disorders (Gandal et al., 2018; Repple et al., 2023; Taylor et al., 

2023). Meta-analytic evidence indicates shared grey matter volume (GMV) loss in the insula and dorsal 

anterior cingulate (Goodkind et al., 2015; Taylor et al., 2023), and cortical thickness (CT) reductions in 

the ventral temporal cortex (Patel et al., 2021) across adult patients with schizophrenia (SCZ), bipolar 

disorder (BD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), autism 

spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD). Developmental studies 

further link dimensional psychopathology scores to alterations in the late-maturing association cortex. 

These include GMV deviations in the dorsal anterior cingulate, ventromedial prefrontal, and inferior 

temporal cortex (Parkes et al., 2021), and connectivity changes in salience and frontoparietal networks 

(Xie et al., 2023). In sum, alterations in several brain regions are implicated in multiple mental disorders. 

Transdiagnostic alterations generally appear to map better to networks than to discrete regions 

(Segal et al., 2023; Taylor et al., 2023). Specifically, alterations are concentrated in networks that mature 

later and are involved in abstract cognitive functions, such as cognitive control and flexibility (Barch, 

2017; McTeague et al., 2017; Segal et al., 2023). These systematic patterns likely reflect that individual 

brain regions do not operate in isolation and mature in a partly synchronized or network-like fashion 

(Raznahan et al., 2011; Segal et al., 2024). Correspondingly, systematic co-alteration patterns have been 

proposed in several disorder-specific studies. For instance, regions exhibiting cortical thinning in SCZ 

also show alterations in adjacent white matter integrity (Di Biase et al., 2019). In ASD, mutual 

relationships between morphological alterations in different regions have been proposed to represent 

shared vulnerabilities and potentially shared neurodevelopmental aberrations (Liloia et al., 2021; Sha 
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et al., 2022). Mass-univariate analyses thus likely paint an incomplete picture by neglecting the inter-

relationships between regional effects. To address this, recent studies have described transdiagnostic 

similarities in whole-brain patterns, complementing regionally discrete findings (Opel et al., 2020; Patel 

et al., 2021; Radonjic et al., 2021). It emerged that SCZ, BD, OCD, MDD, and, to some extent, ASD 

show similarities in the spatial patterns of structural cortical alterations, which were stronger in 

genetically correlated disorders (Bourque et al., 2024; Radonjic et al., 2021). These findings raise the 

question of why certain sets of brain regions are more frequently implicated in psychopathology than 

others, resulting in synchronized alterations that are systematically represented across several mental 

disorders. Identifying such systematic patterns is crucial to understanding the spatiotemporal trajectory 

of pathological processes, their neurobiological and developmental origins, and systematic targets for 

early interventions relevant to a broad range of mental disorders. 

4.2 Linking cortical architecture and developmental trajectories to vulnerability 

It remains unclear to which degree overlaps in cortical alterations across mental disorders may arise 

from systematic constraints imposed by intrinsic cortical organization. Our understanding of 

transdiagnostic phenomena may thus be advanced by recognizing how cortical vulnerability to 

psychopathological alterations is shaped by the cortex’s spatially heterogeneous neurobiology and 

temporally asynchronous maturation. Here, I refer to cortical vulnerability as the intrinsic 

neurobiological characteristics that may render a brain region more susceptible to intrinsic or extrinsic 

risk factors. As such, I highlight a neurobiological perspective that interacts with a range of 

biopsychosocial factors influencing psychiatric vulnerability. 

 

4.2.1 Topographic heterogeneity across the cortical landscape  

Over a century of brain cartography has underscored the cortex’s remarkable heterogeneity that gives 

rise to functional diversity (Amunts et al., 2020; Vogt & Vogt, 1919; Zilles et al., 2002). Cortical 

architecture varies between regions and across multiple neurobiological scales. Here, variations in local 

microstructure (e.g., cyto- and myeloarchitecture, gene expression, and receptor distribution), are 

closely intertwined with macroscale network organization, facilitating global integration and local 

specialization (Zilles et al., 2002; Zilles & Amunts, 2015). This variation defines microstructurally and 

functionally diverse areas whose borders vary across neurobiological scales (Eickhoff et al., 2018; Vogt 

& Vogt, 1919). According to the structural model (García-Cabezas et al., 2019), the extent to which 

cortical areas exhibit analogous microarchitecture predicts the strength of their interconnectivity and 

the cortical layers involved in these connections. Moreover, variation in their layer differentiation 

distinguishes types of information processing and enhances processing hierarchies. As such, layer 

differentiation gradually decreases from externally focused sensory and motor cortices toward 
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transmodal association cortices (Mesulam, 1998). This shows how the spatial arrangement of cortical 

regions relative to their neighbors yields insights into their neurobiology. 

The cortex’s complex architecture, from micro- to macroscale, is organized along multiple 

spatial axes (Figure 1). A dominant organizational principle is the differentiation of unimodal and 

transmodal association cortices, with the latter comprising (para)limbic and heteromodal regions 

(Mesulam, 1998). Functionally, such segregation of unimodal sensorimotor from transmodal default 

mode networks (DMN) is thought to optimize flexible human cognition by balancing externally and 

internally oriented processing (Margulies et al., 2016; Mesulam, 1998). Structurally, variation in 

cytoarchitectonic complexity confers a plasticity-stability continuum (García-Cabezas et al., 2017). 

Elevated potential for plasticity is found in the less differentiated (para)limbic cortex and transmodal 

regions with complex dendritic arborization, which is enhanced by protracted development and synaptic 

plasticity. Conversely, stability increases toward the eulaminate (e.g., primary sensory) cortex with 

increasing laminar differentiation and myelin content (Barbas, 1995; García-Cabezas et al., 2019; 

Nieuwenhuys & Broere, 2017). Such structural and functional hierarchies are closely intertwined. 

According to Mesulam's (1998) seminal work, constrained synaptic plasticity in sensory cortices 

facilitates the reliable registration of inputs, whereas plasticity in hierarchically segregated transmodal 

cortices allows the generation and adaptation of abstract representations. This organization is integrated 

into network topology (van den Heuvel et al., 2012; van den Heuvel & Sporns, 2013). Densely 

connected network hubs that mediate integrative processes across distant regions are typically found in 

transmodal cortices. These central nodes facilitate efficient communication throughout the brain but are 

metabolically demanding and biologically costly (Liang et al., 2013; Tomasi et al., 2013). Ultimately, 

it is assumed that the complex and multiscale topography of the cortex gives rise to flexible cognition 

and diversity across individuals (Kong et al., 2019; Mesulam, 1998). 
 

Figure 1. The human cortex is spatially organized along multiple spatial axes and across multiple 

neurobiological scales. Arrows indicate feature variation along unitless axes. Generated plots are based on 

openly accessible data from: (left to right: Markello et al., 2022; Hänisch et al., 2023; Paquola et al., 2024; 

Hettwer et al., 2024; Valk et al., 2020; Xu et al., 2022; Margulies et al., 2016).  
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4.2.2 Cortical architecture confers differential neurobiological susceptibility  

The various neurobiological features characterizing cortical architecture have differentially 

been linked to susceptibility to psychopathological changes (Fornito et al., 2015; García-Cabezas et al., 

2019). This suggests that the spatial arrangement of differentially susceptible regions may give rise to 

pathological patterns that reflect aspects of cortical organization. At the microscale, regional variation 

in risk gene expression has been shown to influence patterns of GMV alterations (van der Meer et al., 

2022) and functional circuit disbalance by affecting neurotransmitter systems (Cioli et al., 2014; Zhou 

et al., 2012). At the mesoscale, similar cyto- and myeloarchitectural features in spatially distant regions 

can result in synchronized vulnerability due to shared plasticity and strong interconnectivity (García-

Cabezas et al., 2019). Indeed, meta-analyses that report transdiagnostic GMV reductions in the anterior 

cingulate cortex and the insula (Fortea et al., 2024; Goodkind et al., 2015) highlight regions that are 

microstructurally similar (paralimbic) and situated closer to the more plastic pole of a plasticity-stability 

axis. At the macroscale, patterns of structural alterations appear to be constrained by global connectome 

organization (Cauda et al., 2018; Fornito et al., 2015; Vanasse et al., 2021). Alterations are more 

frequently observed in densely connected network hubs and are thought to recapitulate their metabolic 

demands and physiological stress (Cauda et al., 2018; Crossley et al., 2014; Fornito et al., 2015; Vanasse 

et al., 2021). Some regions may particularly contribute to the interregional synchronization of pathology 

through their connections. This results in patterns of alterations reminiscent of their connectivity profile 

and may characterize them as disease epicenters (Zhou et al., 2012). For instance, network-based 

spreading models have highlighted the anterior cingulate cortex and widespread frontoparietal regions 

as putative SCZ epicenters (Georgiadis et al., 2024; Shafiei et al., 2020).  

Overall, the cortex’s topographic heterogeneity indicates that pathological alterations in mental 

illness do not affect all brain regions equally but may follow a systematic, network-like pattern. 

Examining the spatial co-occurrence of cortical alterations in relation to the cortex’s neurobiology may 

thus uncover organizational principles that explain common patterns across different mental disorders. 

 

4.2.3 Neurodevelopmental perspectives on psychiatric vulnerability 

The intrinsic architecture of the cortex is refined throughout typical neurodevelopment (Baum et al., 

2017; Larsen et al., 2023). Such refinement processes are protracted, unfolding asynchronously across 

the cortex into early adulthood (Norbom et al., 2021; Sydnor et al., 2023). Maturational programs 

creating periods of plasticity and consolidation appear to progress from the unimodal sensorimotor 

cortex to the transmodal association cortex. The extended maturation of the association cortex implies 

sustained malleability, conferred by the protracted development of stability-promoting features. These 

may involve the modulation of excitation/inhibition balance, the formation of perineuronal nets which 

stabilize synaptic architecture, and an increase in plasticity-restricting intracortical myelination that 
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limits structural rewiring beyond critical periods (Carceller et al., 2023; Larsen et al., 2023; McGee et 

al., 2005; Takesian & Hensch, 2013). In normative development, prolonged developmental programs 

are thought to facilitate the refinement of cognitive, emotional, and social processes through learning 

and adaptation (Giedd & Denker, 2015). However, plastic periods also render neural structures more 

susceptible to adverse environmental impacts. The protracted plasticity and reorganization of 

association cortices during adolescence and early adulthood has thus been considered a vulnerable 

period for developmental psychopathology (Paus et al., 2008). 

The influence of developmental timing and the progression pattern of cortical malleability adds 

a spatiotemporal dimension to capturing susceptibility. From a neurobiological perspective, 

susceptibility is putatively highest when risk factor exposure temporally coincides with enhanced 

plasticity in regions engaged in processing or responding to risk factor exposure (Cooper & Mackey, 

2016; Paus et al., 2008). Intriguingly, developmental plasticity may thus convey windows of both risk 

and opportunity. On the one hand, prolonged periods of plasticity give more room for aberrations in the 

magnitude and timing of neural system refinement (Paus et al., 2008). Correspondingly, the influence 

of environmental impact on cortical development appears to follow the unimodal-transmodal 

maturational axis, whereby psychosocial risk factor exposure during adolescence predominantly affects 

the late-maturing transmodal pole (Keller et al., 2024; Sydnor et al., 2023). This concentration of 

structural and functional alterations in association cortices is also observed in nearly every major mental 

disorder (Fortea et al., 2024; McTeague et al., 2017; Romer et al., 2021). On the other hand, 

developmental plasticity yields the necessary opportunity to adapt and mature, and for enriched 

environments to leave beneficial traces on malleable brain structures (Giedd & Denker, 2015; 

Hüttenrauch et al., 2016). Maturational trajectories are thus likely intertwined with psychiatric 

vulnerability through several mechanisms, influencing neurobiological susceptibility as well as 

cognitive and affective development. Here, the asynchronous progression of maturational processes 

across the cortical landscape further suggests variability in susceptibility with age. This underscores the 

need to address both inter- and intra-individual variation in psychiatric susceptibility with 

neurodevelopmentally informed models. 

4.3 Susceptibility and resilience to psychosocial adversity 

Humans do not exist and mature in a vacuum, and genetic variation alone cannot fully explain mental 

health outcomes (Krug et al., 2024; Lynch et al., 2021). The environment in which individuals grow up, 

along with significant life events they may encounter, can impact neurodevelopmental trajectories and 

contribute to the pathogenesis of mental illness (Holz et al., 2023; Pollok et al., 2022). As such, 

psychosocial adversity and trauma represent major transdiagnostic risk factors for most mental 

disorders and sub-clinical well-being (Copeland et al., 2018; Green et al., 2010; Hogg et al., 2023; 

Scrimin et al., 2018). Experiencing familial adversity, such as emotional and physical abuse or neglect, 
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or facing traumatic life events, such as the death of a loved one, are not rare phenomena. 

Epidemiological studies indicate that 25-40% of youth experience some form of maltreatment, and more 

than half of adolescents in the USA report traumatic life events (Lippard & Nemeroff, 2020; 

McLaughlin et al., 2013). Identifying factors that influence an individual’s susceptibility to mental 

health challenges in the face of adversity is thus relevant to large parts of the global population.  

The breadth of mental health impairments that psychosocial adversity has been linked to has 

partly been attributed to its influence on key cognitive functions, such as executive functions, which are 

commonly affected in mental illness (Etkin et al., 2013; Lynch et al., 2021). Especially when 

experienced early in life, exposure to psychosocial adversity can shift neurodevelopmental timings 

(Sisk & Gee, 2024; Tooley et al., 2021) and induce brain alterations that persist into adulthood (Holz et 

al., 2023). At the same time, it is increasingly recognized that many individuals retain mental well-being 

despite considerable exposure to psychiatric risk factors, a concept termed resilience. Outcome-oriented 

definitions regard resilience, or resilient psychosocial functioning, as a dynamic construct involving the 

adaptation to risk factors rather than a stable trait (Kalisch et al., 2017; Masten et al., 2021). Analogous 

to identifying risk pathways, ongoing resilience research elucidates biopsychosocial resilience factors 

that reduce the likelihood of negative outcomes. For instance, psychological traits, such as positive 

appraisal tendencies (Kalisch et al., 2024), and protective genetic variants (Hess et al., 2024) may reduce 

the likelihood of lifetime psychiatric disorders. Enriched environments with parental and friendship 

support can further mitigate the impact of negative childhood experiences on mental well-being 

(McLaughlin et al., 2020; Van Harmelen et al., 2017; VanBronkhorst et al., 2024).  

Yet, a holistic understanding of biobehavioral adaptation to the ever-changing environment also 

requires a brain-centric perspective. This perspective aims to identify neurobiological factors associated 

with the (un)successful navigation of psychosocial challenges. Previous neuroimaging research has 

highlighted the role of circuits involved in emotion regulation and stress reactivity for resilience, such 

as orbitofrontal and subcortical limbic volumes and connectivity. Notably, individual differences in 

these circuits have been reported both as correlates of adversity exposure (Brieant et al., 2021; Holz et 

al., 2023) and mental health outcomes relative to adversity exposure, i.e., resilience and susceptibility 

(Eaton et al., 2022; van der Werff et al., 2013). Concepts of the neurobiology of resilience further 

highlight circuits involved in regulatory flexibility and cognitive control, which may facilitate the 

selection of adaptive cognitive strategies to cope with adversity (Kalisch et al., 2024). Overall, current 

resilience research aims to identify neural circuits that support specific psychological and cognitive 

functions, which in turn may influence how individuals respond to adversity.  

Complementary to this angle, neurodevelopmentally informed models that integrate concepts 

of neurobiological susceptibility hold great potential for elucidating a brain-centric understanding of 

navigating psychosocial challenges. Particularly during vulnerable developmental periods, leveraging 

nuanced estimates of ongoing cortical refinement may offer a better understanding of the interplay 

between asynchronous cortical malleability and the effects of environmental adversity on mental health. 
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4.4 Neuroimaging systems-level cortical organization and maturational consolidation 

4.4.1 Systems-level approaches to capturing global cortical patterns 

In vivo neuroimaging and systems-level analytical techniques have provided comprehensive insights 

into the integration of regional pathological alterations with the broader network architecture (Fornito 

et al., 2015; Vanasse et al., 2021). Two common approaches to capture this integration are: 

(1) Examining how regional features are spatially aligned with connectome organization, and 

(2) analyzing inter-regional similarities in cortical features to identify network-like patterns of those 

features (Hansen et al., 2023; Lerch et al., 2006; Vanasse et al., 2021). The former (1) may be achieved 

using in vivo structural and functional connectivity estimates. For instance, diffusion tensor imaging 

maps structural connections by quantifying the directional movement of water molecules along white 

matter tracts (Pierpaoli et al., 1996). Functional connectivity (FC), on the other hand, assumes 

interactions indirectly through temporally synchronized co-activation, as indicated by correlated blood 

oxygen level-dependent signal fluctuations (Biswal et al., 1995). The latter (2) is typically based on 

correlation or covariance approaches that capture inter-regional similarities of cortical features. Here, 

post-mortem analyses have provided insights into topological patterns of covarying gene expression 

patterns, laminar differentiation, and neurotransmitter distributions (Hansen et al., 2022a; Saberi et al., 

2023). In vivo, this approach has been applied predominantly to cortical morphology such as CT. CT 

can be estimated with sub-millimetric precision as the distance between an inner white surface and its 

corresponding point on an outer grey matter (pial) surface, taking cortical folding into account (Fischl 

(2012); Figure 2A). Covariance of CT between regions has been proposed to reflect synchronized and 

genetically coupled maturation (Alexander-Bloch et al., 2019; Raznahan et al., 2011) and co-occurring 

alterations in illness (Sha et al., 2022; Wannan et al., 2019).  

In recent years, the gradient framework has emerged as a popular approach to capturing 

dominant axes of feature variation across the cortex (Huntenburg et al., 2018; Margulies et al., 2016). 

By compressing measures of inter-regional similarities to a single dimension, derived gradients provide 

fundamental insights into macroscale principles of cortical organization and can be visualized on a 

cortical map. Essentially, gradients order brain regions in terms of their variation in a feature of interest 

(Huntenburg et al., 2018). Regions that show high similarity are situated more closely together, whereas 

maximally different regions constitute the apices of a gradient. This approach has successfully captured 

organizational principles across anatomical, functional, developmental, and evolutionary scales (Luo et 

al., 2024; Margulies et al., 2016; Paquola et al., 2019a; Valk et al., 2020). In the context of identifying 

systematic motifs underlying cortical alterations in mental illness, the gradient approach holds promise 

to uncover synchronized vs. independent cortical alteration patterns by placing similarly affected 

regions closer together in a low-dimensional space - independent from their cortical location.  
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4.4.2 Intra-cortical myelin mapping to capture cortical consolidation  

Nuanced analytical approaches may shine light on the mechanistic links between developmental 

susceptibility and cortical maturation, such as cortical malleability and consolidation. By insulating 

neural connections to enhance circuit efficiency, myelin modulates adaptive maturation. However, it 

also limits structural plasticity by consolidating existing connections (Mount & Monje, 2017; Xin & 

Chan, 2020). How this balance mediates developmental susceptibility is currently unclear. Recent 

advances in intra-cortical myelin mapping have provided mesoscale, in vivo proxies of the progression 

of maturational refinement and consolidation across cortical development (Paquola et al., 2019a; 

Whitaker et al., 2016). These approaches utilize quantitative neuroimaging contrasts dominated by 

myelin-related molecules, such as magnetization transfer (MT). Briefly, MT captures the magnetization 

exchange between hydrogen nuclei that are bound to water and those bound to macromolecules, which 

are primarily found in myelin (Sled, 2018; Weiskopf et al., 2021). Although MT-derived myelin 

measures are indirect proxies, they show good convergence with histological measures (Mancini et al., 

2020; Paquola & Hong, 2023) and sensitivity to individual differences (Ziegler et al., 2019). 

Intriguingly, myelin mapping allows the study of the cortical depth dimension in vivo, inspired by 

histological microstructural profiling (Eickhoff et al., 2005; Schleicher et al., 1999). In neuroimaging, 

such depth-wise profiling typically entails (1) the reconstruction of multiple intracortical surfaces 

between inner (white) and outer (pial) grey matter surfaces, and (2) the sampling of myelin-sensitive 

image intensity values at each cortical depth surface (Figure 2B). This approach has captured high 

estimated myelin content that increases gradually with cortical depth in unimodal sensorimotor regions, 

in contrast to lower and less variable myelin content in the paralimbic cingulate and ventral temporal 

cortex (Paquola & Hong, 2023).  

In addition to a nuanced regional characterization, the inter-regional similarity of derived 

profiles, termed microstructural profile covariance (MPC; Paquola et al., 2019b), enables the study of 

synchronized changes in myeloarchitecture. One core assumption underlying the MPC approach is that 

 

 
Figure 2. Schematic presentation of in vivo estimations of cortical thickness (A) and intracortical surfaces 

used to extract intracortical microstructural profiles (B). Images were self-generated. MT = Magnetization 

transfer. 
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inter-regional similarities in cortical microstructure predict their structural connectivity (García-

Cabezas et al., 2019). Here, developmental changes in similarity suggest structural segregation and 

integration. Studies on intracortical myelin development have successfully captured the protracted 

consolidation of connectivity hubs and spatially synchronized cortical differentiation throughout 

adolescence (Paquola et al., 2019a; Whitaker et al., 2016). Overall, leveraging intra-cortical proxies of 

myelin maturation promises to deliver nuanced insights into cortical refinement during vulnerable 

developmental periods.  

4.5 Open science facilitates new routes for psychiatric neuroimaging 

In recent years, international collaborative efforts have reshaped psychiatric neuroimaging through the 

formation of multicenter consortia and open science initiatives. To increase reliability, complementary 

sampling designs have promoted ‘big data’ approaches with higher between-person generalizability, 

and ‘deep phenotyping’ yielding individual-level precision (Gell et al., 2024; Gratton et al., 2022). The 

Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA; Thompson et al., 2014) 

consortium has spearheaded the meta-analytic integration of data on pathological brain alterations from 

around the globe. This collaborative approach aims to enhance statistical power, increase demographic 

and genetic diversity, and reduce site-specific biases, to collectively reveal more generalizable insights. 

Concurrently, ‘deep data’ approaches emphasize richer sample characterization of comparatively 

smaller samples, often involving longitudinal and multimodal data (Gell et al., 2024). This depth of 

information allows for the study of interactions between mental health, environmental influences, and 

multiscale brain features. Together, the two approaches provide complementary insights into 

generalizable principles in representative samples, and multifactorial processes at the individual level. 

The increasing accessibility of digitized brain atlases further aids in contextualizing 

neuroimaging findings with, e.g., cytoarchitectonic atlases, gene expression patterns, and functional 

task engagement (Hawrylycz et al., 2015; Larivière et al., 2021; Triarhou, 2007; Yarkoni et al., 2011). 

By revealing systematic associations with certain neurobiological profiles, such contextualization 

provides insights into the potential etiology of pathological patterns. In sum, international collaborative 

efforts have paved the way for large-scale, nuanced, and comprehensive research, creating 

unprecedented opportunities for studying the neurobiology of psychiatric vulnerability.  
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4.6 Aims of this thesis 

Converging evidence suggests that various mental health impairments are linked to shared brain 

alterations. This thesis aims to provide insights into how brain organization, in particular the spatial 

architecture and developmental trajectories of the cerebral cortex, may guide transdiagnostic cortical 

alterations and susceptibility during adolescence. To this end, I took two complementary perspectives 

on dimensional psychopathology: Using a population-level cross-disorder model (Study 1), I examined 

neurobiological features associated with the spatial organization of shared CT alterations. Using a 

longitudinal model (Study 2), I then studied how developmental variability in cortical consolidation 

may underpin variation in resilience or susceptibility to psychosocial adversity during adolescence.  

In Study 1, I took a systems-level approach to reveal co-occurring CT alterations across mental 

disorders. Specifically, I investigated whether transdiagnostic co-alterations are organized in a network-

like fashion that systematically reflects elements of underlying cortical architecture. This approach 

assumes that overlaps in pathological patterns arise because sets of brain regions share their 

neurobiology and susceptibility. This may lead to alteration patterns that are systematically represented 

across disorders. To address this, I used a structural covariance approach capturing CT co-alteration 

networks across six mental disorders (ADHD, ASD, BD, MDD, SCZ, and OCD) based on ENIGMA 

summary statistics (12,024 patients and 18,969 unaffected individuals). I further identified 

neurobiological features reflected in co-alteration patterns by integrating ENIGMA effect size maps 

with normative connectivity data, as well as cytoarchitectonic, transcriptomic, and task-based functional 

cortical maps.  
In Study 2, I investigated how variations in adolescents’ resilience or susceptibility to 

psychosocial adversity are tied to ongoing cortical consolidation at the individual level. I focused 

specifically on myelination due to its modulatory role both in limiting plasticity through consolidation 

and in adjusting circuit efficiency as part of maturation and responding to the environment. In a 

longitudinal study, I defined resilient and susceptible outcomes as lower or higher levels of psychosocial 

distress than expected based on adversity exposure levels. I further employed intra-cortical myelin 

mapping in combination with functional connectivity to capture systems-level cortical reorganization 

and consolidation. By linking variation in resilience/ susceptibility to maturational variability, Study 2 

aimed to provide nuanced insights into biobehavioral adaptation to psychosocial adversity.  

In sum, this thesis aimed to establish a systematic framework linking cortical alteration patterns 

in dimensional psychopathology to the spatial layout and protracted maturation of the cerebral cortex. 
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5 Empirical work 

5.1 Study 1: Coordinated cortical thickness alterations across six neurodevelopmental 

and psychiatric disorders  
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Coordinated cortical thickness alterations
across six neurodevelopmental and psychia-
tric disorders

A list of authors and their affiliations appears at the end of the paper

Neuropsychiatric disorders are increasingly conceptualized as overlapping
spectra sharing multi-level neurobiological alterations. However, whether
transdiagnostic cortical alterations covary in a biologically meaningful way is
currently unknown. Here, we studied co-alteration networks across six neu-
rodevelopmental and psychiatric disorders, reflecting pathological structural
covariance. In 12,024 patients and 18,969 controls from the ENIGMA con-
sortium, we observed that co-alteration patterns followed normative con-
nectome organization and were anchored to prefrontal and temporal disease
epicenters. Manifold learning revealed frontal-to-temporal and sensory/lim-
bic-to-occipitoparietal transdiagnostic gradients, differentiating shared illness
effects on cortical thickness along these axes. The principal gradient aligned
with a normative cortical thickness covariance gradient and established a
transcriptomic link to cortico-cerebello-thalamic circuits. Moreover, trans-
diagnostic gradients segregated functional networks involved in basic sensory,
attentional/perceptual, and domain-general cognitive processes, and dis-
tinguished between regional cytoarchitectonic profiles. Together, our findings
indicate that shared illness effects occur in a synchronized fashion and along
multiple levels of hierarchical cortical organization.

The conceptualization of neurodevelopmental and psychiatric dis-
orders has undergone several transformations toward overlapping
spectra of psychopathology1,2 associatedwith underlying polygenicity,
neurodevelopmental etiology, and epidemiological comorbidity1,3,4.
Efforts to empirically understand their dimensional structure has
linked the general liability for mental illness to shared risk factors and
common alterations in neurodevelopmental processes, predisposing
to the clinical conditions ultimately manifested5–8. Coordinated multi-
level brain alterations across disorders may explain these phenomen-
ological overlaps and common etiology.

Big-data neuroscience initiatives such as the Enhancing NeuroI-
maging Genetics through Meta-Analysis (ENIGMA) consortium have
facilitated large-scale transdiagnostic investigations to identify shared
and disorder-specific brain alterations9. These studies consistently
report cortical thickness alterations in neurodevelopmental and psy-
chiatric disorders10–15, which serves as a proxy measure for neuronal

density, cytoarchitecture, and intracortical myelination16–18. Crucially,
previous ENIGMA findings suggest that regional morphological
alterations are not only shared between disorders19–22, but also in part
associatedwith shared genetic etiology20, regional pyramidal-cell gene
expression21, microstructure, and neurotransmitter system
organization22. While these findings highlight regional overlaps as
shared effects between disorders, the current study aims to address
inter-regional dependencies capturing coordinated transdiagnostic
patterns of illness effects. That is, differences in brainmorphology and
function observed inpsychiatric patients appear to follownetwork-like
patterns constricted by underlying connectome organization23–25.
According to the nodal stress hypothesis, highly interconnected
regions (‘hubs’) show increased susceptibility to pathological pro-
cesses due to shared metabolic alterations, spread of pathogens, or
similar gene expression profiles25,26. In addition, regional disruptions
can act as ‘disease epicenters’ by promoting pathological processes in
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areas they connect to, thus constituting anchors of network-like
alterations27. Although the role of network characteristics for cortical
alterations in psychopathology is well established25,28,29, it remains
unknownhowcross-disordermorphological alterations areembedded
in a joint co-alteration network, and whether organizational principles
shaping such a network link to underlying neurobiology.

An intuitive approach capturing inter-regional dependencies of
illness effects is structural covariance of cortical thickness alterations,
which forms cortex-wide co-alteration networks. While structural
covariance partly reflects synchronized and genetically coupled
maturation during healthy neurodevelopment30–32, consolidated atro-
phy in illness also occurs more frequently in regions with high struc-
tural covariance33,34. Moreover, inter-regional similarities in cortical
features tend to be hierarchically organized: Previous mappings of
low-dimensional cortex-wide gradients have described continua of
cytoarchitectural complexity, long- versus short-distance connectivity,
cell density, transcriptomic expression, and phylogenetic and onto-
genetic timing35–38. Such gradients (or ‘axes’) compactly summarize
covariance patterns via connectome decomposition techniques35,39,
and placebrain regionswith similar covariance profiles closer together
in a common coordinate-frame, regardless of their position on the
cortex. These axes offer insights into the global arrangements of cor-
tical features and appear to be distorted in several neuropsychiatric
conditions22,40–42. Together, previous research highlights the role of
convergent hierarchical neurobiological profiles as a central feature of
healthy brain organization. Yet, it is currently unknown whether the
global arrangement of regional vulnerability tomental illness follows a
hierarchical organization as well.

In this study, we identified hubs of transdiagnostic co-alteration
networks and disease epicenters using meta-analytical maps for six
neurodevelopmental and psychiatric disorders (autism spectrum dis-
order (ASD), attention-deficit/hyperactivity disorder (ADHD), major
depressive disorder (MDD), schizophrenia spectrum disorders (SCZ),
bipolar disorder (BD), and obsessive-compulsive disorder (OCD)),
provided by the ENIGMA consortium10–15. We further employed a
cortex-wide gradient mapping approach to identify hierarchical cor-
tical arrangements of transdiagnostic illness effects. Last, we con-
textualized derived gradients with cytoarchitectonic and functional
cortical profiles for multi-level evaluation and studied the embedding
of individual disorder impact maps within our framework. We per-
formed multiple robustness checks to evaluate the stability of our
findings.

Results
Transdiagnostic co-alteration hubs inform disease epicenters
Consistent with previous work19,21,22, we selected six neurodevelop-
mental and psychiatric disorders for which illness effects have been
studied in large samples in collaborative international meta-
analyses by the ENIGMA consortium. To study coordinated trans-
diagnostic effects of illness on cortical thickness, we accessed
summary statistics from 12,024 patients with ASD10, ADHD11, MDD12,
SCZ13, BD14, or OCD15, and 18,969 unaffected individuals from pre-
viously published ENIGMA studies (see Table S1). Analyses were
restricted to adult samples, except for ASD for which available
summary statistics included all age groups. See Table S2 for infor-
mation on sample demographics. For each condition, we retrieved a
Cohen’s d map via the ENIGMA Toolbox43 reflecting case-control
differences in cortical thickness for 68 Desikan-Killiany parcels44

(Fig. 1A). Cohen’s dmaps were corrected for different combinations
of covariates including age, sex, site, and intelligence quotient
(Table S2). For contextualization with normative network proper-
ties, we further accessed healthy control cortico-cortical structural
(diffusion-weighted tractography; DTI) and functional (resting-
state functional magnetic resonance imaging; rs-fMRI) connectivity
data from an independent sample of healthy young adults from the

Human Connectome Project (HCP45) through the ENIGMA
Toolbox43 (Fig. 1B).

First, we computed a transdiagnostic co-alteration matrix by
correlating Cohen’s d values between regions and across disorders.
Regions showing a high sum of strong connections (i.e., correlations)
were identified as co-alteration hubs (Fig. 1C). Transdiagnostic hub
regions predominated in bilateral medial temporal gyrus and ventral
temporal cortex, and more widespread in temporal and frontal
regions. When studying which regions are most strongly and con-
sistently affected across disorders via the sum of normalized illness
effect maps (‘hit map’; see Fig. S1), we observed a significant correla-
tion with transdiagnostic co-alteration hubs (r =0.42, pspin < 0.0001),
suggesting that hubs are placed in regions with shared impact. This
effect predominated for shared thickness reductions (r = 0.334;
pspin = 0.01) rather than relative increases (r = −0.30; pspin = 0.02).
Furthermore, the spatial pattern of co-alteration hubs correlated with
normative functional connectivity hubs (r =0.50, pspin < 0.0001), but
less so with structural hubs (r = 0.18, pspin = 0.08). Co-alteration hubs
were comparable at different thresholds and when correcting for
sample size (see Fig. S2).

Having confirmed a general convergence between hubs of coor-
dinated cortical thickness alterations and normative connectome
organization, we next investigated whether these patterns are
anchored to potential disease epicenters. As previous work has indi-
cated, epicenter mapping aids to understand how the normative
connectivity profile associatedwith a specific regionmayplay a central
role in the manifestation of a disorder27,46,47. Here, we identified
transdiagnostic epicenters as regions whose connectivity profile may
underlie illness effects that are consistently organized across dis-
orders, i.e., regions whose network embedding correlates significantly
with co-alteration hubs. Thus, the epicenter mapping approach high-
lights the role of regions that do not necessarily constitute hubs
themselves48 but may contribute to shaping shared patterns of illness
effects through strong or distributed connections with co-alteration
hubs. Systematically investigating connectivity profiles of 68 cortical
seeds revealed primarily temporal and prefrontal regions as potential
transdiagnostic disease epicenters (Fig. 1D). This finding held true
when computing epicentersbasedon the ‘hitmap’ (Fig. S1E, F).Highest
ranked functional disease epicenters were observed in the left
entorhinal cortex, left pars orbitalis, right banks of the superior tem-
poral sulcus (STS), left pars triangularis, and left STS (r = 0.55–0.59; all
pspin < 0.05). Top five structural disease epicenters were present in left
pars opercularis and triangularis, inferior parietal lobe, STS bank, and
caudal middle frontal gyrus (r =0.28–0.42; all pspin < 0.05).

Macroscale gradients of transdiagnostic co-alteration networks
So far, our analyses suggest that the cortex-wide network of trans-
diagnostic illness effects is non-randomly organized, with hubs of
prominent covariance and epicenters shaping the co-alteration net-
work. Next, via manifold learning, we sought to study the embedding
of these features within low-dimensional organizational gradients39,49.
This analysiswasbasedon the sameco-alterationmatrix used toderive
transdiagnostic hubs (Figs. 1C and 2A). We applied diffusion map
embedding49 to project regional and long-range connections within
covariance networks into a common space. This yielded unitless
components, each of which denotes the position of nodes on a con-
tinuumdescribing similarities in regions’ structural covariance profiles
(Fig. 2A). Thus, opposing apices of a gradient reflect maximally
divergent covariance patterns.

The principal gradient of transdiagnostic covariance (G1) cap-
tured a dominant dissociation between frontal and temporal lobes and
accounted for 36% of variance in transdiagnostic co-alteration
(Fig. 2B). The secondary gradient (G2) spanned from occipito-
parietal regions to temporo-limbic structures, explaining 21% of var-
iance. Findings were comparable at different thresholds and robust
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against parameter manipulation, sample size correction, and selection
of diagnoses (see Fig. S2). An overview of all computed gradients is
presented in Fig. S3. Investigating the correspondence between the
disease epicenters and the transdiagnostic gradients, we found that
the apices of G1 captured previously identified functional disease
epicenters (Fig. S4). This implies that frontal and temporal epicenters
each contribute to the overall pattern of co-alterations but do so in a
maximally distinct manner (Fig. S5).

Since previous studies have shown that cortical thickness altera-
tions in psychopathology are more prominent in regions with high
structural covariance50, we assessed whether the disease-related rela-
tive changes in cortical thickness align with normative organization of
absolute cortical thickness. Indeed, weobserved a correlation between
the principal cortical thickness covariance gradient (anterior-poster-
ior; Fig. 2C)36 and G1 (r = −0.74, pspin = 0.0015) but not G2 (r = −0.11,
pspin = 0.27). The second cortical thickness covariance gradient
(inferior-superior) was not related to G1 (r =0.32, pspin = 0.21) or G2
(r = −0.25, pspin = 0.07).

Microstructural and transcriptomic contextualization
After capturing macroscale organization of disease effects, we con-
textualized identified gradients with microscale cytoarchitecture to
gain a multi-level understanding of neurobiological cortical profiles in
shaping transdiagnostic co-alteration networks. To this end, we stra-
tified our gradients according to von Economo-Koskinas cytoarchi-
tectonic classes51. We observed a prominent distinction between
granular and agranular cortices across our principal transdiagnostic
gradient (Fig. 2D), whereas G2 distinguished between granular and
parietal cytoarchitectonic classes.

Using post-mortem gene expression data from the Allen Human
Brain Atlas (AHBA) as a reference52, we next identified genes for which
spatial expression patterns significantly correlated with G1 (see
Table S3). This approach has previously revealed genetic links to
normative brain development and organization52–54 as well as struc-
tural abnormalities indisease42,55,56.We generated nullmodels to assess
spatial specificity (including spatially autocorrelated phenotype
maps57) and gene specificity (including (i) genes with similar levels of

Fig. 1 | Hubs and epicenters shaping transdiagnostic co-alteration patterns.
A Disorder-specific Cohen’s d maps indicating case-control differences in cortical
thickness. BNormative connectivity matrices derived from resting-state functional
magnetic resonance imaging (rs-fMRI) anddiffusion-weighted tensor imaging (DTI)
from the Human Connectome Project (HCP45) and hubs (degree centrality). C Left:
Computation of co-alteration hubs. Degree centrality was computed as the sum of
above-threshold (80%) connections at each parcel using disorder maps from the
Enhancing Neuroimaging Genetics through Meta-analyses (ENIGMA) consortium.
Right: Visualization of the epicenter mapping approach using resting state func-
tional connectivity (rsFC) or DTI. Seed-based connectivity profiles were system-
atically correlated with co-alteration hubs (using Pearson’s r and assessing

significance via two-sided spin-tests, correcting for spatial auto-correlation, with-
out further correction for multiple comparisons). D Transdiagnostic disease epi-
centers are depicted ascorrelations betweenco-alterationhubsandHCPnormative
seed-based connectivity profiles (rs-fMRI or diffusion tensor imaging (DTI)), thre-
sholded at pspin < 0.05 (this panel shows DTI examples). High correlations imply
high likelihood of a structure constituting a disease epicenter. Top five functional
and structural disease epicenters are framed in white/black. Source data are pro-
vided as a Source Data file. ADHD=Attention-deficit/hyperactivity disorder;
ASD=Autism spectrum disorder, BD= Bipolar disorder, MDD=Major depressive
disorder, OCD=Obsessive-compulsive disorder, SCZ = Schizophrenia spectrum
disorders.
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coexpression and (ii) genes overexpressed in the brain compared to
the rest of the body)58 of the identified gene set. Out of 232 genes for
which expression patterns correlated significantly withG1, 146 showed
a positive correlation with G1, i.e., they were more strongly expressed
in the PFC than in temporal regions. Developmental gene enrichment
analysis59 revealed that next to the cortex, identified genes were most
prominently expressed in the thalamus and cerebellum across various
developmental windows (Fig. 2E). In a combined assessment of all
brain structures, genes appeared to be enriched most strongly during
neonatal early infancy, mid/late childhood, and adolescence. G2 was
not significantly associated with genes included in the AHBA after
correcting for spatial and gene specificity.

Associations with task-based functional activations
Next, we aimed to identify potential functional implications by inves-
tigating whether transdiagnostic gradients dissociate regions asso-
ciatedwith distinct functional engagement. To this end, we conducted
a meta-analysis on task-specific functional activations for 24 cognitive
terms using the NeuroSynth database60. We binned each gradient into
five-percentile bins and defined regions of the same bin as a region of
interest (ROI). Resulting 20ROIs for eachgradient were then tested for
their overlap with meta-analytic ROIs associated with each of the 24

cognitive terms via z-statistics. Themagnitude of an average z-value at
a ROI (i.e., a position along the gradient) reflects the strength of its
association with a certain functional task activation. We sorted the
topic terms by their weighted mean position along both gradients,
revealing systematic shifts in functional networks along transdiag-
nostic axes of co-alteration. In a combined 2D space framed by both
gradients, we could distinguish between different co-alteration pat-
terns in primary (e.g., ‘auditory’) and ‘multisensory’ regions at the
temporal apex, higher-order perceptual structures (e.g., ‘visual per-
ception’ and ‘attention’) at the occipito-parietal apex, and complex
cognitive functions (e.g., ‘cognitive control’ and ‘inhibition’) at the
frontal apex (Fig. 2F and Fig. S6).

Embedding of individual disorders within a transdiagnostic co-
alteration space
Having established several features guiding a transdiagnostic co-
alteration network, we last aimed to evaluate the positioning of
individual disorders within this continuous transdiagnostic space.
To this end, we first studied the correspondence between a parcel’s
whole-brain transdiagnostic covariance profile and a parcel’s whole-
brain disorder-specific covariance profile (see Fig. 3A, B). While
associations with the transdiagnostic pattern vary between
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Fig. 2 | Macroscale organization of transdiagnostic covariance in cortical
thickness alterations. A A cross-disorder structural covariance matrix was thre-
sholded at 80% and decomposed using diffusion map embedding. Covariance
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cortical thickness (CT) covariance36 and transdiagnostic gradients. D Cross-
condition gradients stratified according to von Economo-Koskinas cytoarchitec-
tonic classes51. E Developmental gene enrichment analysis based on 232 genes for

which spatial expression patterns correlated with G1 (of which 146 showed a
positive correlation, i.e., were overexpressed in prefrontal compared to temporal
regions). F Meta-analysis for diverse cognitive functions obtained from
NeuroSynth60. We computed parcel-wise z-statistics, capturing node-function
associations, and calculated the center of gravity of each function along 20 five-
percentile bins of G1 and G2. Function terms are ordered by the weighted mean of
their location along the gradients. Source data are provided as a Source Data file.
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disorders and across the cortex, most disorders showed highest
similarity to shared patterns in heteromodal cortices. This mirrors
other findings presented here which suggest heteromodal cortices
as regions that not only tend to be affected, but also tend to be
affected similarly across disorders and in a synchronized manner
across the cortex. Next, we compared the degree of similarity
between disorders and their embedding within the transdiagnostic
co-alteration space. Replicating what previous transdiagnostic stu-
dies have shown19,20, we observed a cluster composed of SCZ, BD,
and OCD, while ADHD and ASD stayed separate (Fig. 3C, D). In
contrast to clustering approaches, our cross-disorder covariance
approach aimed to describe a transdiagnostic organizational space
in which disorder effects occur. Indeed, we found that disorders
that cluster together, such as SCZ, BD, and OCD showed a similar
placement within this transdiagnostic co-alteration framework (see

Fig. 3D–F). While transdiagnostic hubs correlated with illness effect
maps in SCZ (r = 0.76, pspin < 0.0001), BD (r = 0.66, pspin = 0.001),
and OCD (r = 0.26, pspin = 0.03), this was not the case for ASD
(r = 0.07, pspin = 0.31) and MDD (r = −0.05, pspin = 0.41), and ADHD
showed a negative correlation (r = −0.42, pspin = 0.003). Similarly,
disorder-specific epicenters overlapped with transdiagnostic epi-
centers in SCZ, BD, and OCD, and in part in MDD (see Fig. 3E and
Fig. S7), whereas ADHD and ASD showed no significant disorder-
specific epicenters in the first place. Together, these analyses indi-
cate that similar illness effect maps relate to similar degrees to
transdiagnostic co-alteration hubs, are linked to epicenters that
overlap to similar degrees with transdiagnostic epicenters (Fig. 3E),
and are positioned more closely together in a transdiagnostic cov-
ariance space framed by G1 and G2 (Fig. 3F and Table S4). However,
we also observe that disorders which show some similarity but are
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Fig. 3 | Embedding of six disorders within transdiagnostic co-alteration net-
works. A Computation of transdiagnostic and within-disorder co-alteration
matrices. B Region-wise correspondence between disorder-specific and trans-
diagnostic co-alteration profiles. Disorder-specific inter-regional difference scores
were inverted so that higher correlations with transdiagnostic patterns indicate
higher coupling. C Similarity of illness effects between disorders, i.e., correlations
of Cohen’s d maps, and how they cluster together in a two-cluster solution (D).
Position of individual disorders within a transdiagnostic co-alteration space based

on E the correlation between transdiagnostic hubs and Cohen’s dmaps (x-axis) and
the overlap between transdiagnostic and disorder-specific epicenters (y-axis); and
F the correlation between the principal (G1) and secondary (G2) transdiagnostic
gradients with Cohen’s d maps. Source data are provided as a Source Data file.
ASD=Autism spectrum disorder, SCZ = Schizophrenia spectrum diagnoses,
MDD=Major depressive disorder, ADHD=Attention-deficit/hyperactivity dis-
order, BD= Bipolar disorder, OCD=Obsessive-compulsive disorder.
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allocated to different clusters, such as MDD and ADHD, are posi-
tioned closer to each other in our continuous transdiagnostic space,
crossing cluster boundaries.

Discussion
Our study reports coordinated effects of six major mental disorders
(SCZ, BD, OCD, ASD, ADHD, and MDD) on cortical thickness and their
association with functionally relevant neurobiological patterns across
multiple scales of analysis. Thus, we extended previous investigations
of shared regional effects19–22 toward a network-based approach that
embeds regional alterations within cortical hierarchies of transdiag-
nostic covariance of illness effects.

We identified hubs of transdiagnostic co-alteration pre-
dominantly in lateral and ventral temporal lobes, with some impact on
post-central and medial frontal regions. Importantly, these hubs
overlapped with regions showing shared thickness alterations, indi-
cating especially pronounced coordination within co-alteration net-
works between consistently affected regions. Observing an
interrelationshipofpathological cortical thickness alterations between
temporal and prefrontal heteromodal cortices, but less so in unimodal
and paralimbic cortices, indicates distinguishable processes shared
between disorders and across the cortex. Furthermore, co-alteration
hubs followed the spatial pattern of normative functional connectivity
hubs, suggesting that captured variability in susceptibility may link to
nodal stress25,26,61. Indeed, in vivo markers of e.g., aberrant energy
metabolism and post-mortem proteomic analyses have revealed
overlaps between MDD, SCZ, and BD62–64. As hubs are more strongly
influenced by genes than non-hubs65, hub regions may exhibit
increased shared vulnerability for atypical neurodevelopment, sup-
ported by both the polygenicity and genetic overlaps in psychiatric
diagnoses. Thus, nodal stress, along with other potential factors such
as shared genetic susceptibility, appears to be a strong candidate
explanation for the irregular topographic distribution of covarying
illness effects28,66.

Present results further indicate that large-scale patterns of
shared illness effects are shaped by both structural and functional
epicenters. That is, transdiagnostic epicenters suggest a central role
of prefrontal and temporal cortex in the manifestation of mental
illness, indicating how transdiagnostic cortical alterations are
anchored in the connectivity of identified regions. Notably, influ-
ences of functional epicenters emerged above and beyond hard-
wired tracts. Such a divergence is likely67, as functional connectivity
reflects a temporal correlation of activity which may be driven by
distant input into a spatially distributed polysynaptic network68,69.
The high concordance of prefrontal and temporal connectivity
profiles with co-alteration hubs indicates that epicenters pre-
ferentially emerged in regions known to extend long-range
connections70, facilitating their contribution to cortex-wide orga-
nizational patterns. Structures in the mediotemporal lobe and
ventrolateral PFC were identified as most likely epicenters. Both
regions have been implicated in cognitive impairments and devel-
opmental susceptibility across neurodevelopmental and psychia-
tric disorders53,71,72. Mediotemporal structures further act as nodal
points between multimodal cortical association areas and the sub-
cortex, and feature transitions in cytoarchitecture from iso- to
allocortical regions37. These features may increase both vulner-
ability to nodal stress and the spread of pathological alterations
through wide-ranging connections. At the same time, the vlPFC
shows protracted plasticity throughout multiple neurodevelop-
mental stages73. While allowing for continuous refinement of com-
plex cognitive abilities, protracted plasticity gives room for
aberrant maturational processes leaving the individual more sus-
ceptible to developmental aberrations. Overall, the epicenter
mapping approach thus identified anchors of large-scale trans-
diagnostic co-alteration networks in regions that both have the

potential to spread illness effects through long-range connections
and are susceptible to maturational aberration.

Further investigating transdiagnostic covariance via manifold
learning, we recapitulated cortex-wide gradients along which co-
alteration patterns were organized. The principal transdiagnostic
gradient captured a cortex-wide segregation of frontal and temporal
structures, indicating that cortical thickness alterations in both regions
are embedded in maximally distinct covariance networks. The con-
cordance of G1 with the normative organizational axis of cortical
thickness covariance36 mirrors previous findings indicating increased
susceptibility to cortical atrophy in regions that exert high structural
covariance33,74. As cortical thickness covariance is assumed to reflect
commonmaturational trajectories30, atypical neurodevelopment likely
contributes to shaping cortical gradients of co-alteration networks.
The process of shaping transdiagnostic gradients throughout devel-
opment may further be influenced by subcortico-cortical circuits75–78,
as suggested by our transcriptomic decoding findings. Here, we
observed that genes whose expression pattern aligns with G1 are also
enriched in the cerebellum and thalamus in early developmental
phases. Notably, studies on subcortical interactions have linked
impaired functional coordination within cerebello-thalamo-cortical
circuits to a general liability for psychopathology79,80. It is thus possible
that the organization of transdiagnostic co-alterations observed in the
cortex partly builds upon alterations in subcortical circuits. The sec-
ondary gradient was restricted to uni- and heteromodal sensory cor-
tices in the posterior cortex, segregating regions that hold primary
sensory (pericalcarine cortex, post-central and superior temporal
gyrus) and paralimbic (entorhinal) cortices from multimodal associa-
tion regions in the occipito-parietal cortex. Both axes described seg-
regations along different cytoarchitectural classes. Whereas G1
traversed between agranular, paralimbic, versus granular, primary
cortices, G2 showed a cytoarchitectural divergence between granular
and frontal/parietal cortices. Variable susceptibility to disease impact
thus suggests that areas with shared cytoarchitecture are more likely
embedded similarly within pathological networks. This may be due to
similar local computational strategies supported by cell count and
wiring strategies17, development81, and the degree of plasticity asso-
ciated with different degrees of cortical lamination53. Future workmay
further investigate the specific neurobiological mechanism linking
cytoarchitecture, function, and mental illness.

We further contextualized our findings with respect to functional
processes through meta-analytical task-based activations. Combining
G1 and G2 in a two-dimensional space revealed distinct co-alteration
profiles at three levels of information processing, i.e., primary/multi-
sensory, perception/attention, and domain-general cognitive control.
Interestingly, all three levels show various processing impairments in
different neuropsychiatric conditions which are in part interrelated:
Firstly; atypical early development of sensory cortices can contribute
to social cognitive deficits through impaired social cue perception82,83

and, more generally, deficits in multisensory binding83,84. Secondly; at
an intermediary level, aberrant functional involvement and structural
integrity of attention networks have been identified as a prominent
transdiagnostic feature of neuropsychiatric conditions28,85. Thirdly;
upstream consequences of dysregulated attention networks ulti-
mately contribute to impaired higher-order cognitive functions such
as executive control. Impaired executive control does not only con-
stitute a transdiagnostic feature in mental illness86, but is also a pre-
dictor of cognitive and socio-occupational impairment86–88. Despite
inter-related deficits within functional networks, the observation that
multiple processing levels are associated with distinct structural co-
alteration patterns indicates independent maturational causes and
distinct vulnerability. In line with findings from cytoarchitectonic
contextualization, levels of functional engagement of cortices
involved in similar tasks appear to leave brain regions processing
similar types of information with shared susceptibility. Given that
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sensory regions develop earlier than association regions in the cortical
maturational sequence89, differences in pathological covariance pro-
filesmay link to thedegree towhich theirdevelopmentalpeaks overlap
with vulnerable periods for neurodevelopmental and psychiatric dis-
orders. This raises the question whether identified cortical gradients
also reflect a spatiotemporal gradient of atypical neurodevelopment
and inspire respective investigations in longitudinal/prospective stu-
dies. Overall, our findings indicate that the degree to which regional
alterations may be linked to and potentially facilitate alterations in
other brain regions (i.e., potential epicenters), and the degree towhich
such interrelations pose a general feature of the neurodevelopmental
and psychiatric disorders included (i.e., co-alteration hubs) appears to
vary across the cortex and follows general neurobiological principles
of brain organization (i.e., cortex-wide axes).

Last, we aimed to investigate how the proposed transdiagnostic
co-alteration space, framed by both transdiagnostic covariance gra-
dients, compares to previous descriptions of cross-disorder simila-
rities and disorder clusters. That is, our cross-disorder covariance
approach generates a continuous space within which disorders vary
with respect to their topography of similarity to transdiagnostic pat-
terns across the cortex. While we indeed found that positions of dis-
orders within this space converge with their allocation to disorder
clusters, the co-alteration framework captures both similarities within
and between clusters in a continuous manner. By embedding illness
effects within a space shaped by genetic and maturational processes,
we gain further insight in differentiable neurobiological mechanisms
underlying individual disorders. Indeed, the first gradient, stretching
between frontal and temporal regions showed similarities with a pre-
viously described anterior-posterior axis along the cortical mantle90.
Previous work has indicated differentiable spatial patterns of co-
maturation and development along several spatial axes, indicating the
interplay of multiple neurodevelopmental mechanisms across the
cortex56,90,91. The observed systematic alterations along such axes
across disorders may reflect differential disruptions in pre- and post-
natal neurodevelopment. Moreover, we observed that, for most dis-
orders, overlap between disorder-specific and transdiagnostic covar-
iance is highest in heteromodal cortices. This convergence may be
linked to their placement within these neurodevelopmental axes53,92,
supporting these regions as targets of transdiagnostic investigations.
Future work may evaluate potential causes and critical time windows
of development within this framework, enhancing our understanding
of the ontogeny of cortical organization in health and disorder.

It is of note that, although disorder impact generally converged in
heteromodal regions and linked to transdiagnostic covariance gra-
dients, each disorder showed a unique embedding within our frame-
work. For example, thoughweobservedwidespread coupling between
transdiagnostic and disorder specific covariance networks in ASD and
ADHD, and marked association with the principal transdiagnostic
covariance gradient, there was only reduced correspondence with the
epicenter framework, indicating disrupted relationship between dis-
order hubs and connectivity profiles. Conversely, MDD showed in
particular correspondence with transdiagnostic patterns in ventral
PFC, subgenual anterior cingulate, somatosensory cortex and nucleus
accumbens, but showed reduced correspondence with transdiagnos-
tic epicenters and the transdiagnostic gradients. It is possible that
MDD, being at the center of the 2Dgradient space and showing highest
similarities with both ADHD and OCD, can be best described by yet
another axis not captured in the current framework which is domi-
nated by neurodevelopmental patterning. The future work expanding
our framework to more disorders as well as atlasses with higher
granularity may be able to further pin-point differential axes of
embedding for different disorders.

While our findings underline the relevance of transdiagnostic
approaches, they do not contradict the existence of etiological and
phenomenological differences within and between psychiatric

diagnoses. Our transdiagnostic approach does not capture hetero-
geneity within and between highly related diagnostic categories, as
expected to be present e.g., within the included SCZ (schizophrenia
spectrum disorders) and BD (type I and II combined) samples. How-
ever, shared features crossing diagnostic boundaries are likely also an
important factor contributing to within-disorder heterogeneity.
Moreover, individuals may be diagnosed with multiple different dis-
orders across their lifespan4. Understanding which neurobiological
principles drive the spectrum of varying neurodevelopmental and
psychiatric disorders is a crucial piece of the puzzle of the biological
origin of disorder variability. Yet, investigating both disorder-specific
phenomena and heterogeneity within (spectrum-)diagnoses forms a
crucial line of research that will continue to complement our trans-
diagnostic findings. Presented cortex-wide co-alteration features shall
facilitate and provide a transdiagnostic coordinate frame for such
insights.

Although we mostly included adult samples and age-corrected
summary statistics, there are some offsets among mean ages of
ENIGMAmaps andbetweenENIGMAmaps and the referencedata from
other sources (e.g., HCP). These offsets potentially influenced para-
meters known to change during development and aging, such as hub
organization89. In addition, neurodevelopmental conditions have dif-
ferent mean ages of onset so that patients included have certainly
experienced different lengths of disease and medication histories. It
should further be noted that also other disorders such as substance
abuseor anxiety disorders tend to co-occurwith someof the disorders
included here, but could not be included in the analyses as ENIGMA
cortical thickness summary statistics have not yet been published.
Further work including a wider range of disorders will help to evaluate
the generalizability of our transdiagnostic model. ENIGMA summary
statistics used here are based on the Desikan-Killiany atlas44. They thus
contain comparatively sparse data points across the cortex and sum-
marize data from broader areas that contain a mosaic of neurobiolo-
gical regions that may be differentially affected by disease. Moreover,
differences in parcel size93, measurement error, subject motion and
scanner/site effects94,95 may slightly influence spatial covariance ana-
lyses. Last, the lack of subject-level clinical information impeded the
direct assessment of clinical implications of current findings. However,
understanding the principles according to which cortical alteration
patterns are organized across diagnoses will provide a fruitful basis for
further investigations on the interrelationship between network
organization and symptoms shared across disorders, as well as varia-
tions within categorical diagnoses.

In sum, our findings highlight the value of linking multiple neu-
robiological levels of information—from macroscale neuroimaging to
microscale transcriptomic data—to identify systematic transdiagnostic
patterns of illness effects. Investigating these patterns revealed coor-
dinated cortical alterations across conditions that are shaped by con-
nectomic, cytoarchitectonic, and functional characteristics. As such,
we provide a cortical coordinate system in line with concepts of
dimensional psychiatry and network-based pathology, to which future
clinical neuroscience findings can be aligned and integrated. Future
work may further expand on this approach not only to include dif-
ferent modalities and neuroimaging metrics (e.g., surface area and
subcortical structures), but also to consider a much wider range of
conditions and age ranges, which is now becoming increasingly pos-
sible due to the availability of multi-disease consortia and datasets96,97.
This may provide a crucial step toward understanding the neuro-
etiology of neuropsychiatric conditions.

Methods
ENIGMA neuroimaging summary statistics
For our transdiagnostic analyses, we used publicly available multi-site
summary statistics published by the ENIGMA Consortium, and avail-
able within the ENIGMA Toolbox (https://github.com/MICA-MNI/
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ENIGMA43). Included neurodevelopmental and psychiatric disorders
comprised ADHD11 (ncases = 733, ncontrols = 539), ASD10 (ncases = 1571,
ncontrols = 1651), BD (type I and II, cumulated)14 (ncases = 1837, ncontrols =
2582), MDD12 (ncases = 1911, ncontrols = 7663), OCD15 (ncases = 1498,
ncontrols = 1436), and SCZ (including schizophrenia spectrum
diagnoses)13 (ncases = 4474, ncontrols = 5098). Except for ASD for which
available summary statistics included all age groups, we restricted our
analyses to adult samples. This decision may increase the variance in
disease duration due to differences in typical ages of onset associated
with the six diagnoses. However, we aimed to match adults to mini-
mize effects that are linked to development and aging, which are
potentially larger than the effects of disease duration. We based our
analyses on covariate-adjusted case-control differences denoted by
across-site random-effects meta-analyses of Cohen’s d-values for cor-
tical thickness. Age, sex, and site information was fitted to cortical
thicknessmeasures viamultiple linear regression analyses. As previous
studies have shownassociations between IQandbrain structure aswell
as alterations of this association in ASD98, IQ was included as a cov-
ariate in the ASD sample. See Table S2 for an overview on demo-
graphics and study-specific covariates. Preceding the computation of
summary statistics, raw data was pre-processed, segmented and par-
cellated according to the Desikan-Killiany atlas44 in FreeSurfer (http://
surfer.nmr.mgh.harvard.edu) at each site and according to standard
ENIGMA quality control protocols (see http://enigma.ini.usc.edu/
protocols/imaging-protocols). Sample sizes ranged from 1272
(ADHD) to 9572 (SCZ). We redirect the reader to the original
publications10–15 for more details on age matching and controlling for
medication or comorbidities. Ethics approval and subjects’ informed
consent was obtained by individual cohort investigators.

Population connectivity data
Functional and structural connectivitymatriceswerebasedon 1 hof rs-
fMRI and diffusion MRI from healthy adults (n = 207, 83 males, mean
age = 28.73 ± 3.73 years), respectively. The data were acquired through
the HCP45, minimally pre-processed according to HCP guidelines99 and
made publicly available as group-average structural and functional
connectivity matrices in the ENIGMA Toolbox43. See Supplementary
Material for more information about the computation of connectivity
matrices.

Structural covariance of disease effects on local brain structure
Wederived a 68 × 68 cross-condition correlationmatrix by computing
inter-regional Pearson’s correlations of cortical thickness Cohen’s d
values across the six conditions.

Covariance hubs and transdiagnostic disease epicenters
In order to derive co-alteration network hubs using a degree centrality
approach, we first identified which connections (i.e., correlations) of
the previously derived cross-condition correlation matrix belong to
the top 20% of strong connections. We then computed the sum of
these connections for each parcel, where regions with many strong
connections represent hubs of high transdiagnostic covariance of ill-
ness effects (Fig. 2A). Next, we accessed whole-brain functional (rs-
fMRI) and structural (DTI) connectivity matrices from a healthy adult
HCP dataset45 via the ENIGMAToolbox43, whichwe also thresholded at
80%. Normative connectivity hub maps based on HCP data was com-
puted using the same degree centrality approach (i.e., the sum of all
strong connections) and spatially correlated with the transdiagnostic
structural co-alteration hub map. Significance was assessed via spin
tests (see SupplementaryMaterial and ref. [57]). This analysis aimed to
assess whether co-alteration hub regions align with the normative
underlying connectome and may thus be linked to nodal stress.

To identify transdiagnostic disease epicenters, we systematically
assessed spatial similarity of each parcel’s normative whole-brain
connectivity profile with our map of co-alteration hubs using spatial

permutation tests. To do so, we collected seed-based functional (rs-
fMRI) and structural (DTI) connectivity matrices for each parcel and
14 subcortical structures from the same HCP dataset45. We then spa-
tially correlated each structure’s connectivity profile with the co-
alteration hub map. The higher the spatial similarity between an epi-
center’s connectivity profile and co-alteration hubs, the more likely
this structure represents a disease epicenter (at p <0.05 after spin
tests). Resulting likelihoods were ranked to identify the top five
structural and functional transdiagnostic disease epicenters.

Gradient decomposition
We computedmacroscale organizational gradients using BrainSpace49

(https://github.com/MICA-MNI/BrainSpace) in Matlab 2020b. The
68 × 68 structural covariance matrix was thresholded at 80% and
transformed into a non-negative square symmetric affinity matrix by
using a normalized angle similarity kernel. We then applied diffusion
mapping as a nonlinear dimensionality reduction method39,49 to esti-
mate the low-dimensional embedding of our previously derived high-
dimensional affinity matrix. Here, cortical nodes that are close toge-
ther reflect nodes that are inter-connected by either many supra-
threshold or few very strong edges, whereas nodes that are farther
apart reflect little or no covariance. We set α, a parameter which
controls the impact of sampling density (where 0–1 =maximal to no
influence), to 0.5. This α value retains global relations in the low-
dimensional space and is assumed to be comparatively robust to noise
in the input matrix. Lastly, we assessed the amount of information
explained by received gradients, selected the first two gradients for
further analyses and projected them onto a cortical mesh using
BrainStat (https://github.com/MICA-MNI/BrainStat).

Link to normative axes of cortical thickness organization
An association with normative cortical thickness organization was
studied by correlating derived transdiagnostic gradients with pre-
viously established gradients of cortical thickness covariance in heal-
thy adults. These two normative gradients were based on cortical
thickness data from individuals in the S1200 HCP sample and were
derived using the same diffusion embedding approach as described
above (see ref. [36]). Spatial associations were evaluated using spin
tests57.

Cytoarchitectonic contextualization
To determine whether transdiagnostic gradients recapitulate
cytoarchitectonic variation evidenced by post-mortem histological
assessments, we further stratified our gradients according to the five
von Economo-Koskinas cytoarchitectonic classes51. This atlas sub-
divides the cortex into five categories: agranular (thick cortex housing
large cells but scarce layers II and IV), frontal (thick cortex, large but
sparse cells, layers II and IV are present), parietal (thick cortex that is
rich in cells, dense layers II and IV, slender pyramidal cells), polar (thin
cortex, rich in cells, particularly granular cells) and granular/koni-
cortex (very thin cortex with highest density of small cells).

Genetic decoding
Having established macro- and microscale contextualization of our
findings, we finally aimed to understand its association with gene
transcriptomic data provided by the Allen Institute for Brain Sci-
ence (AIBS)52. Microarray expression data was processed in
abagen100, including intensity-based filtering, normalization and
aggregation within Desikan-Killiany parcels and across donors. Only
genes with a similarity of r > 0.2 across donors were included,
resulting in 12,668 genes for the analysis43. We correlated trans-
diagnostic gradients with the post-mortem gene expression maps
and tested for spatial and gene specificity using several null models:
First, we generated a set of random spatially autocorrelated phe-
notypemaps57 to test the spatial specificity of associations observed
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between gene transcriptomic profiles and transdiagnostic gra-
dients. Genes with an expression profile significantly correlated
with G1 or G2 (pspin < 0.01) were defined as gene set for following
gene specificity tests. Next, using the Gene Annotation using Mac-
roscale Brain-imaging Association (GAMBA) Toolbox58, we tested
this gene set against two types of null models: The null-
coexpressed-gene model and the null-brain-gene model. The null-
coexpressed-gene model includes genes with a similar co-
expression level as the gene set of interest to generate null dis-
tributions. The null-brain-gene model generates null models
exclusively from genes over-expressed in brain tissue and is thus
more conservative than classical random-gene models. If a gene set
was identified as significantly associated with a transdiagnostic
gradient in both linear regressions and described permutation
tests, it was next used as input for a developmental enrichment
analysis via the cell-type specific expression analysis (CSEA) devel-
opmental expression tool (http://genetics.wustl.edu/jdlab/csea-
tool-2)59. This allowed us to compare genes identified with respect
to the AIBS repository with developmental expression profiles from
the BrainSpan dataset (http://www.brainspan.org), yielding more
detailed, yet indirect, information about brain structures and
developmental windows in which identified genes are enriched.

Functional decoding
To assess whether transdiagnostic gradients capture differential
impact on cognitive networks, we assessed the distribution of various
cognitive functions along transdiagnostic gradients35,53. To this end,we
conducted a meta-analysis using the NeuroSynth60 database. Briefly,
we derived 20 ROI maps by decomposing G1 and G2 into five-
percentile bins and combining regions of the same bin to a joint ROI.
The granularity of five-percentile bins is assumed to capture subtle
variations along cortical axes. We then examined the association of
each ROI with 24 cognitive topic terms via z-statistics. Topic terms
were then sorted based on their center of gravity and arranged in a
two-dimensional space that was created by merging G1 and G2, for
visualization.

Association between disorder-specific illness effect patterns
with transdiagnostic findings
Last, we aimed to understand the degree to which cortical altera-
tions observed in individual disorders are reflected in described
transdiagnostic features. To this end, we first examined cross-
cortical similarities of illness effects within disorders101,102, via
absolute differences in Cohen’s d values between regions. We then
correlated each parcel’s disorder-specific whole-brain covariance
profile with the previously described transdiagnostic covariance
profile of the same parcel. This allowed us to investigate disorder-
specific cortical topographies of varying regional associations with
transdiagnostic patterns. Second, we examined the similarity of
illness effect maps among disorders via pair-wise correlations and
applied hierarchical clustering to the resulting cross-disorder cor-
relationmatrix. These steps allowed us to investigate how disorders
with varying similarity to each other and to transdiagnostic features
described in this study are positioned in the proposed transdiag-
nostic covariance space. To this end, we correlated the transdiag-
nostic co-alteration hubmapwith disorder-specific Cohen’s dmaps,
and computed disorder-specific epicenters by systematically cor-
relating each region’s normative connectivity profile (rs-fMRI and
DTI) to disorder-specific Cohen’s d maps. We then assessed the
overlap between disorder-specific and transdiagnostic epicenters in
percent, and combined this with the association to transdiagnostic
hubs in a 2D space. Similarly, we examined the correlation between
transdiagnostic gradients and disorder-specific Cohen’s d maps in a
2D space framed by G1 and G2. Together, these analyses revealed

how individual disorders are embedded in relation to each other
within a transdiagnostic coordinate frame.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this paperwere obtained fromopen-access sources.
Disorder-specific Cohen’s d maps derived from ENIGMA meta-analyses
were accessedvia the ENIGMAToolbox (v. 1.1.3; https://enigma-toolbox.
readthedocs.io/en/latest/;43). Through the toolbox, we also accessed
normative connectivity data from a Human Connectome Project young
adult sample (HCP; http://www.humanconnectome.org/;45), the von
Economo-Koskinas cytoarchitectonic atlas51, and gene transcriptomic
data from the Allen human brain atlas (https://human.brain-map.org/)
as accessible through Abagen (https://doi.org/10.5281/zenodo.
4984124). The functional meta-analysis was based on the NeuroSynth
database (https://neurosynth.org/). Developmental enrichment ana-
lyses were based on the Brainspan dataset (https://www.brainspan.org/
static/download.html). Data generated for this study were made pub-
licly available under https://github.com/CNG-LAB/cngopen/tree/main/
transdiagnostic_gradients and https://doi.org/10.5281/zenodo.7180120.
Raw imaging data supporting our findings are not publicly available as
they contain information that could compromise the privacy of study
participants. There are data sharing restrictions imposed by (i) ethical
review boards of the participating sites, and consent documents; (ii)
national and trans-national data sharing law, such as GDPR; and (iii)
institutional processes, some of which require a signedMTA for limited
and predefined data use. However, we welcome sharing data with
researchers, requiring only that they submit an analysis plan for a sec-
ondary project to the leading team of the Working Group (http://
enigma.ini.usc.edu). Once this analysis plan is approved, access to the
relevant data will be provided contingent on data availability and local
PI approval and compliance with all supervening regulations. If applic-
able, distribution of analysis protocols to sites will be facilitated. Source
data are provided with this paper. Source data are provided with this
paper (Supplementary Material). Source data are provided with
this paper.

Code availability
Custom code generated for this project was made publicly available
under https://github.com/CNG-LAB/cngopen/tree/main/transdiagnostic_
gradients andhttps://doi.org/10.5281/zenodo.7180120.Our analysis code
makes useof open software: Gradientmapping analyseswere carried out
using BrainSpace (v. 0.1.2; https://brainspace.readthedocs.io/en/latest/)
and epicenters were computed using code from the ENIGMAToolbox (v.
1.1.3; https://enigma-toolbox.readthedocs.io/en/latest/;43). Visualizations
were carried out using BrainStat (v. 0.3.6; https://github.com/MICA-MNI/
BrainStat) in combinationwithColorBrewer (v. 1.0.0; https://github.com/
scottclowe/cbrewer2). Genetic analyses were performed using the
GAMBA Toolbox (2021; https://github.com/dutchconnectomelab/
GAMBA-MATLAB) and the cell-specific enrichment analysis tool (v. 1.1;
http://genetics.wustl.edu/jdlab/csea-tool-2/).
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Longitudinal variation in resilient
psychosocial functioning is associated with
ongoing cortical myelination and functional
reorganization during adolescence

Meike D. Hettwer 1,2,3,4 , Lena Dorfschmidt5,6,7, Lara M. C. Puhlmann4,8,
LindaM. Jacob4, Casey Paquola1, Richard A. I. Bethlehem 9, NSPNConsortium*,
Edward T. Bullmore5, Simon B. Eickhoff1,2,3 & Sofie L. Valk 1,2,3,4

Adolescence is a period of dynamic brain remodeling and susceptibility to
psychiatric risk factors, mediated by the protracted consolidation of associa-
tion cortices. Here, we investigated whether longitudinal variation in adoles-
cents’ resilience to psychosocial stressors during this vulnerable period is
associated with ongoing myeloarchitectural maturation and consolidation of
functional networks. We used repeated myelin-sensitive Magnetic Transfer
(MT) and resting-state functional neuroimaging (n = 141), and captured
adversity exposure by adverse life events, dysfunctional family settings, and
socio-economic status at two timepoints, one to two years apart. Development
towardmore resilient psychosocial functioningwas associatedwith increasing
myelination in the anterolateral prefrontal cortex, which showed stabilized
functional connectivity. Studying depth-specific intracortical MT profiles and
the cortex-wide synchronization of myeloarchitectural maturation, we further
observed wide-spread myeloarchitectural reconfiguration of association cor-
tices paralleled by attenuated functional reorganization with increasingly
resilient outcomes. Together, resilient/susceptible psychosocial functioning
showed considerable intra-individual change associated with multi-modal
cortical refinement processes at the local and system-level.

Adolescence is a period of pronounced brain remodeling that med-
iates biological and psychosocial maturation, but also heightened
susceptibility to environmental adversity that may influence develop-
mental trajectories1,2. The study of longitudinal trajectories in the

presence of adversity exposure3 and psychiatric symptoms2,4,5 has thus
been fundamental to advancing our understanding of inter- and intra-
individual differences in psychiatric susceptibility. At the same time,
there is a growing recognition that many individuals maintain good
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mental well-being despite adversity, i.e., show resilient adaptation6–8.
To comprehend bio-behavioral adaptation to an ever-changing envir-
onment, it has been vital to integrate neurodevelopmental assess-
ments, complementary to inter-personal and physiological factors.
Converging evidence from cross-sectional studies has highlighted
brain regions involved in emotion regulation and stress reactivity in
relation to adolescent susceptibility or resilience to environmental
adversity. Specifically, resilient adaptation has been linked to larger
prefrontal and hippocampal volumes, increased prefrontal regulation
of amygdala activity, attenuated amygdala responses to adverse sti-
muli, and increased structural connectivity of the corpus callosum9,10.
In the past decade, however, psychosocial conceptualizations have
increasingly highlighted the dynamic nature of resilience7,9,11–14. Cor-
respondingly, the ability to adapt to environmental adversity may
show considerable intra-individual changes tied to plastic neurode-
velopment. However, longitudinal studies exploring this notion,
especially during periods of heightened susceptibility to psycho-
pathology, remain scarce1,9,15.

Insights into adolescent brain development have recently
expanded from analyses of cortical size metrics (such as volume and
thickness) to more fine-grained proxies of intra-cortical myelin
maturation5,16,17. This line of research highlights the continuous mye-
lination of intra- and inter-regional connections, enhancing circuit
efficiency as a central feature of adolescent cortical maturation18,19.
While myelination restricts structural plasticity by consolidating
established connections, it has also been found to continuously
modulate network dynamics to adapt to ever-changing environmental
circumstances19,20. Rates of myelin maturation are heterochronous
across the cortex and are particularly protracted in highly inter-
connected association cortices16,21,22. This protracted maturation,
implying longer periods of developmental plasticity, likely reflects
later refinement of functional networks associated with abstract cog-
nitive functions, such as cognitive control. However, it also renders
them more susceptible to environmental impact and psychopatholo-
gical alterations16,21,22. Thus, the dual role of myelin in structural con-
solidation and dynamic functional adaptation makes the study of
ongoing adolescent myelination a compelling focus to address the
question of whether the maturation of behavioral capacities for psy-
chosocial adaptation is tied to ongoing cortical consolidation.

Recent advances in in vivo imaging of cortical myelin have
improved our understanding of myeloarchitectural maturation. One
promising imaging contrast is magnetic transfer saturation (MT)23,
which is dominated by myelin-related molecules in the brain, as has
been confirmed by several histological validation studies24–26. It has
also been demonstrated to be sensitive to both developmental
processes5,16,17 and pathological alterations in myelin content27. Aiming
at more nuanced insights into age-related changes in intracortical
myeloarchitecture, several studies have sampled myelin-proxies
across intra-cortical depths perpendicular to the cortical mantle,
commonly referred to as “cortical profiling”5,16. Such depth-dependent
profiling allows analysis of synchronized, large-scale patterns of cor-
tical myeloarchitectural development by quantifying changes in inter-
regional similarities (microstructural profile covariance; MPC). Pre-
vious work suggests that microstructural similarity predicts cortico-
cortical connectivity28,29. Thus, studying changes in MPC with age
yields valuable insights into system-level microstructural integration
and differentiation, and its potential link to functional
reorganization30,31. Association areas, in particular, represent a nexus
of mixed intra-cortical profiles32,33 that show marked and partly syn-
chronized refinement well into early adulthood16. This microstructural
refinement may be central to supporting the maturation of the
intrinsic functional organization of the default and frontal parietal
networks, supporting continued cognitive development of functions
such as cognitive control and emotional flexibility34,35. In sum, lever-
aging multi-modal, system-level approaches is imperative to unravel

the complex role of cortical refinement in mental health and aligns
with the broader understanding that maturational and psychopatho-
logical cortical alterations occur in a network-like fashion36,37.

Together, previous research suggests that (1) understanding the
development of psychosocial resilience requires complementary
longitudinal studies, (2) the protracted consolidation of association
cortices by myelination throughout adolescence likely confers
increased susceptibility to adverse environmental influences, and (3)
in vivo myelin mapping has facilitated multi-modal and multi-scale
insights into cortical development. On this basis, the current study
investigated whether intra-individual change in susceptibility and
resilience to environmental adversity exposure is tied to differential
rates of local and global myeloarchitectural consolidation, and
accompanying functional maturation during adolescence and young
adulthood (age range: 14–26 yrs). Environmental stressors included
dysfunctional family environments, significant adverse life events, and
low socioeconomic status, at two consecutive time points, one to two
years apart. For each time point, we quantified a continuous resilient
psychosocial functioning (RESPSF) score, reflecting psychosocial
functioning adjusted for individual stressor exposure. That is, RESPSF
scores reflect residual variance in psychosocial distress that is not
explained by the normative response to the stressor load an individual
faced7,38. Thus, lower-than-expected distress reflects resilient adapta-
tion, whereas higher-than-expected distress reflects greater suscept-
ibility to environmental stressors38. We then investigated associations
between intra-individual changes in resilient psychosocial functioning
and brain maturation, specifically focusing on the role of ongoing
myelination18,21 and the impact on intrinsic function. We observed that
longitudinal development towards more susceptible or resilient out-
comes was associated with differential rates of prefrontal myelination,
prefrontal functional network maturation, and cortex-wide mye-
loarchitectural reorganization of association cortices. Thus, extending
cross-sectional studies suggesting increased susceptibility of associa-
tion cortices to environmental impact16,21,22, we conclude that adoles-
cent cortical maturation of areas typically implicated in
psychopathology is tied to dynamic intra-individual changes in psy-
chosocial functioning relative to adversity.

Results
Resilient psychosocial functioning (ResPSF) scores (Fig. 1)
We quantified continuous ResPSF scores by predicting psychosocial
distress frommeasures of environmental adversity (Fig. 1A). Briefly, we
derived a latent factor (Supplementary Table S1; chi2 = 34293,
p <0.001), reflecting levels of psychosocial distress across domains of
anxiety, depression, antisocial and compulsive-obsessive behavior,
self-esteem, psychotic-like experiences, andmental well-being (similar
to refs. 38,39). In a supervised random forest prediction, we then
predicted psychosocial distress scores from adverse life events,
childhood trauma, parenting style, family situation, and socio-
economic status (R2 = 0.21, MAE = 15.15, correlation between true and
predicted distress scores: r =0.46). The inverse deviations between
true and predicted distress, i.e., themodel residuals, were extracted to
quantify resilient psychosocial functioning. ResPSF scores thus reflect a
spectrum ranging from susceptible to resilient outcomes, i.e., the
extent towhich an individual shows higher or lower distress levels than
expected given their stressor exposure (for similar approaches, see
refs. 38,40–43). For parsimony, we will refer to this spectrum as resi-
lient psychosocial functioning, which shall include the susceptible
(negative) end of the spectrum. See Supplementary Table S2 for links
to demographic data.

Different sub-samples were included across analyses in this study
(Fig. 1A; see Supplementary Methods for details): The computation of
distress score loadings (n = 1533) and the prediction from adversity
measures (n = 712; subsample with additional NSPN U-change ques-
tionnaires) were conducted in independent samples to avoid leakage
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effects. From the n = 712 sub-sample, we studied general patterns of
MT maturation in n = 199 for whom longitudinal imaging data were
available. We then linked longitudinal imaging patterns to change in
resilient psychosocial functioning in n = 141 individuals who addition-
ally completed all included questionnaires at repeated time points.

Fundamental patterns of MT maturation
We started our investigations by evaluating fundamental myeloarchi-
tectural patterns in the entire imaging sample (n = 199; 18.83 ± 2.84 y;
96 female), before addressing individual differences with respect to
developing resilient psychosocial functioning. We visualized the
group-averaged regional MT change between first and last imaging
sessions (∆MT) and observed a widespread intra-individual increase in
MT (Fig. 1B; 1.26 ± 0.34 y apart). ∆MTwas highest towards frontal and
temporal poles with strongest inter-individual variability (std) in the

ventral prefrontal cortex. Systematic sampling of myelin-sensitive MT
intensities along 10 equivolumetric surfaces perpendicular to the
cortical mantle further revealed generally highest mean and inter-
individual variability in ∆MT in mid-to-deep layers.

Intra-individual changes in resilient psychosocial functioning
To study longitudinal variation in resilient psychosocial functioning,
we assessed the change (∆) in ResPSF scores between the first and last
measurement timepoint (on average 1.14 (SD 0.32) years apart) in
n = 141 individuals for whom both repeated imaging and behavioral
assessments were available (Fig. 1A). 57% of individuals showed a
positive change in resilient psychosocial functioning with age (mean
∆ = 2.40; SD = 16.35). We did not observe sex differences or age effects
on changes in ResPSF scores in either this subsample or in the larger
behavioral prediction sample in which ResPSF scores were calculated

Fig. 1 | Behavioral analysisworkflowand group-average longitudinal change in
myelin-sensitive Magnetic Transfer (MT). A Based on the Neuroscience in Psy-
chiatry Network (NSPN) cohort, resilient psychosocial functioning (ResPSF) scores
were computed for each subject at each available time point by predicting psy-
chosocial distress (left) from adversity assessments (Alabama parenting ques-
tionnaire (APQ), Life events questionnaire (LEQ), Childhood trauma questionnaire
(CTQ), Measure of Parenting style (MOPS), and socio-economic status (SES)).
ResPSF scores were defined as the difference between observed and predicted

distress, i.e., showing higher (i.e., more susceptible) or lower (i.e., more resilient)
than expected psychosocial distress. Longitudinal changes in ResPSF are depicted
in the bottom panel for participants that are part of the neuroimaging (MRI) or
solely behavioral (non-MRI) analyses. B (i) Mean and standard deviation (SD) of
intra-individual change in myelin-sensitive Magnetic Transfer (∆MT) in the full
imaging sample (n = 199). (ii) ∆MT averaged across the cortex and visualized for
three age strata. (iii)Mean and SDof∆MTacross 10 intracortical depths and across
the cortex. Line colors for (ii) and (iii) reflect age strata defined in theMiddle panel.
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(n = 455 out of n = 712 individuals with at least two measurement time
points) (Supplementary Table S2). Longitudinal changes in resilient
psychosocial functioning were not related to changes in stressor
exposure (Supplementary Fig. S1) and showed comparable distribu-
tions in individuals included in the imaging analyses and individuals
included in the behavioral analyses only (Supplementary Fig. S2).

Intra-individual variation in resilient psychosocial functioning
and myelin-sensitive MT (Fig. 2)
Once longitudinal MT patterns and ResPSF scores were determined, we
aimed to elucidate the association betweenongoingmyelinationduring
adolescence and changes in resilient psychosocial functioning (n = 141).
We observed a positive association between developing toward more
resilient functioning (i.e., an intra-individual increase in ResPSF scores)
and ∆MT in the predominantly left-lateralized anterolateral prefrontal
cortex (PFC; tmax(134) = 4.51; βstandardized = 0.36; CIstandardized β = [0.20,
0.52] (medium effect); p10,000 permutations & FDR <0.05; Fig. 2A). This
effect was robust to several analytical choices and sub-sampling (see
Supplementary Fig. S3). Given that myelination rates are not homo-
geneous across cortical depths (see Fig. 1B iii), we further tested for
intracortical differentiability of theobservedeffectwithin theprefrontal
cluster. The positive association between longitudinal variation in resi-
lient psychosocial functioning and ∆MT was homogeneous across 10
intra-cortical sampling depths (Fig. 2A ii).

We next assessed whether the effects of longitudinal variation
in resilient psychosocial functioning were concentrated in regions
characterized by a specific cytoarchitecture, and associated dura-
tion of developmental plasticity, using cortical types. The five cor-
tical types included agranular, dysgranular, eulaminate I, II and III,
and koniocortex and have been proposed to represent a hierarchy
of cortical architectonics, ranging from highly differentiated and
myelinated koniocortex to less differentiated and more plastic
agranular cortex28,44. We stratified the unthresholded t-map
according to this prior categorization of cortical types and identi-
fied which cortical types overlapped with the significant prefrontal
cluster. We observed that parcels showing a significant effect of
changes in ResPSF scores were located in eulaminate cortex II & III
(Fig. 2B), which contain regions of comparatively high cytoarchi-
tectural complexity and layer differentiation. Overall, the cortical
topology of the unthresholded t-map followed a general posterior-
to-anterior pattern, aligning with a cortex-wide axis of MT devel-
opment (Supplementary Fig. S4)

Probing whether observed longitudinal effects might be related
to cross-sectional differences at baseline, we observed no cross-
sectional association between ResPSF scores and MT. One medial
frontal gyrus parcel showed lower baseline MT in individuals with
lower ResPSF scores at baseline compared to follow-up (see Supple-
mentary Fig. S5).

Fig. 2 | Development of resilient psychosocial functioning is associated with
changes in anterolateral prefrontal myelin-sensitive Magnetic Transfer (MT)
and functional connectivity (FC). A (i) A general linear model testing the asso-
ciation between change in resilient psychosocial functioning scores (ResPSF) and
change in MT (∆MT) revealed that adolescents who showed increasingly resilient
responses to psychosocial stressors with age showed a higher rate of myelin-
sensitive MT change in the anterolateral prefrontal cortex (PFC; p <0.05, FDR
corrected, 10,000 permutations; two-sided test). (ii) This effect was on average
homogeneous across cortical depths. Box plots for each intra-cortical surface
include t-values derived for significant regions depicted in (i), where the box is
defined byminima = 25% andmaxima = 75%, lines depictmedians, and whiskers are
defined by values 1.5 times the interquartile range. Effects were predominantly
located in eulaminate cortex II and III (B). Defining the cluster identified in (A) as a

seed (C), we further observed that prefrontal FC was more globally maintained (i)
with increasing ResPSF. Across the cortex (ii), this effect was most prominent in
default mode (DMN) and frontoparietal (FPN) networks (D; p <0.05, FDR cor-
rected, 10,000 permutations; two-sided test). Gray masks in functional data reflect
parcels that were excluded due to low signal-to-noise ratios. In (B) and (D), white
dots reflect medians, violins depict vertical kernel density plots, the minima and
maxima of black boxes are defined by 25% and 75% quartiles. All results depicted
here are based on n = 141 individuals. Note that line plots in Ai) and Ci) are colored
with respect to increasing vs. decreasing ResPSF for visualization, but analyses were
performedoncontinuous ResPSF scores. Kon =Konicortex, Eu-I-III = Eulaminate I-III,
Dys =Dysgranular, Ag= Agranular; VAN =Ventral attention network, DAN=Dorsal
attention network, SM= Sensorimotor, VIS = Visual.
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Intra-individual change in intrinsic functional connectivity of
the anterolateral prefrontal cortex
Having established a positive association betweenmyelin-sensitiveMT
increase and intra-individual increases in resilient psychosocial func-
tioning, we next investigated concordant changes in the prefrontal
cluster’s intrinsic functional connectivity (Fig. 2C). To this end, we
defined the identified prefrontal parcels exhibiting a significant effect
in MT analyses as a seed and assessed both global (i.e., degree cen-
trality) and network-level effects of changes in ResPSF scores on
intrinsic functional connectivity (∆FC). Globally, we observed more
maintained levels of cortex-wide functional connectivity with
increasingly resilient outcomes, whereas increasingly susceptible
outcomes were associated with a segregation (small global effect:
t(134) = 2.45; βstandardized = 0.21; CIstandardized β = [0.04, 0.37], p =0.02).
Studying the cortex-wide pattern of associations between changes in
ResPSF scores and prefrontal ∆FC revealed that effects were con-
centrated in regions of the default mode, frontoparietal and ventral
attention networks (medium regional effect: tmax(134) = 3.78;
βstandardized = 0.31; CIstandardized β = [0.14, 0.46], p10,000 permutations &

FDR < 0.05; Fig. 2C, D) andweredriven by sub-regions of the PFCcluster
that are part of the defaultmode network (see Supplementary Fig. S6).

System-level cortical maturation (Fig. 3)
Thus far, our analyses suggest a role of local prefrontal myeloarchi-
tectural and inter-regional functional network maturation for devel-
opmental changes in susceptible/resilient psychosocial functioning.
This suggests that local microstructural alterations may also reflect
system-level cortical refinement. Therefore, we next aimed to study
system-level myeloarchitectural and parallel functional reorganiza-
tion. To this end, we computed a microstructural profile covariance
(MPC) network reflecting interregional similarities of

myeloarchitectural profiles. The MPC matrix was generated by first
probing MT intensities at ten equally spaced intra-cortical depth
coordinates, yielding cortical depth profiles of regional MT from the
pial surface to the white matter boundary of each cortical area. We
then calculated the pairwise Pearson correlation between regional
profiles while controlling for average MT intensity to derive the MPC
matrix (Fig. 3A). This allowed us to examine the topology of synchro-
nized effects of age ondepth-specific changes in approximatedmyelin
content, which are reflected in changes in regional intra-cortical pro-
files and thus their inter-regional similarity. Next, we computed a
maturational index (MIMPC; Fig. 3B), which captures the age-related
change of all MPC edges of a node as a function of their respective
baseline patterns (estimated for age 1445). The MIMPC revealed a
topologically heterogeneous pattern of reorganization (p < 0.05, FDR)
with strongest reorganization in frontoparietal association cortices
(Fig. 3D). This pattern was robust to sub-sampling (Supplementary
Fig. S7). The MIMPC was spatially aligned with a previously established
cortical axis of age-relatedMPCchange (Fig. 3C). Regions closer on this
axis exhibit more similar patterns of age-related change in MPC,
whereas distant regions undergo dissimilar development16. The axis
captures a differentiation of frontoparietal association cortices thatwe
found to exhibit disruptive reorganization, to resemble either idio-
typic sensory or paralimbic/temporal cortex maturational patterns
(Fig. 3E). At the same time, we observed a U-shaped association
between the MIMPC and the main axis of age effects, where regions at
the extremes of the axis exhibited a positive MIMPC, i.e., a positive
correlation between baseline and change patterns. A positive MIMPC

reflects an integration of regions that showed higher myeloarchi-
tectural similarity at baseline and/or a differentiation of regions that
were already dissimilar at baseline. This strengthening of existing
patterns has been termed ‘conservative’ development45. Conversely,

Fig. 3 | Systems-level cortical maturation in the full imaging sample (n= 199),
capturing multi-modal reorganization in association cortices. A–C Depict
analytical approaches. A MT intensities were sampled along 10 equi-volumetric
surfaces between gray matter (pial) and gray matter /white matter boundaries to
derive microstructural profiles and a microstructural profile covariance (MPC)
matrix. B The maturational index (MI) captures correlations between baseline (i.e.,
a pattern predicted for age 14 by a mixed effects general linear model) and change
patterns (i.e., the age effect estimated by thatmodel) in a region’s network.CA low-
dimensional axis of MPC age effects was derived by applying diffusion map
embedding to order regions according to their similarity in synchronized micro-
structural differentiation with age. D–G depict derived maturational patterns.
D MI of MPC (MIMPC; pFDR <0.05), showing conservative development in ventral

temporal and dorsal regions, and disruptive reorganization in fronto-parietal
association cortex. E Relationship between theMIMPC and the principal axis ofMPC
maturation. The non-linear relationship indicates that conservatively developing
ventral and dorsal regions followmaximally different developmental patterns. FMI
of functional connectivity (MIFC; pFDR <0.05), showing conservative development
in sensorimotor cortex and disruptive reorganization in heteromodal association
cortex. G Maturational categories: Overlaps between MIMPC and MIFC per Yeo
network. + = conservative, - = disruptive. VIS Visual, SM Sensorimotor, DAN Dorsal
attention network, VAN Ventral attention network, FPN Frontoparietal network,
DMNDefaultmodenetwork. Graymasks in functional connectivity (FC) data reflect
parcels that were excluded due to low signal-to-noise ratios.
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towards the center of the axis, we observed a negative MIMPC, indi-
cating a reorganization of MPC embedding. Here, regions that were
more dissimilar at baseline became more integrated with each other
and/or regions with highermyeloarchitectural similarity becamemore
differentiated. This is termed ‘disruptive’ reorganization (which does
not imply pathological disruption, but rather a disruption of baseline
patterns during development).

Given the complex relationship between system-level structural
and functional development34,46, we studied the convergence of mye-
loarchitectural and functional maturational modes. The MI based on
functional connectivity (MIFC) is characterized by a clear differentia-
tion of ‘conservative’ development in unimodal regions and ‘dis-
ruptive’ reorganization in heteromodal association areas (Fig. 3F45).We
found parallel conservative development as well as MPC-
reorganization co-occurring with conservative FC development in
regions involved in sensory- and attention-related processes (visual,
sensorimotor, and ventral attention network). Regions of the default
mode and frontoparietal networks showed both cross-modal reorga-
nization and structure-function divergence, with MPC showing con-
servative but FC disruptive developmental patterns (Fig. 3G).
Together, this shows that microstructural and intrinsic functional
organization show both convergent and divergent system-level
maturational patterns.

System-level maturation and intra-individual change in resilient
psychosocial functioning (Fig. 4)
Last, we investigated whether longitudinal changes in resilient psy-
chosocial functioning are associated with different degrees of system-
level reorganization between the ages of 14 and 26. Because both the
MI and the main axis of age-related MPC change are derived from
group-level statistics, it was required to form groups for these analyses

by dichotomizing behavioral changes reflecting increasingly resilient
(+∆ResPSF) vs. increasingly susceptible (−∆ResPSF) outcomes. We
observed significant group differences between +∆ResPSF and -∆ResPSF
individuals in the MIMPC in 43 predominantly heteromodal regions
(Fig. 4A; p < 0.05 FDR & 10,000 permutations). 93% of these regions
showed a negative shift in MIMPC in individuals developing towards
more resilient outcomes, mostly reflecting less conservative develop-
ment (58%; Fig. 4B; Supplementary Table S3), but alsomore disruptive
reorganization (19%). A further 16% of these reflected regions that
generally showed no significant association between baseline and age-
related change patterns in the full imaging sample, that is, in regions
that followed neither conservative nor disruptive developmental pat-
terns. The observations were robust to alternative modeling approa-
ches (Supplementary Fig. S8).

Contextualizing these findings with existing atlases of cortical
types28 and intrinsic functional networks47 revealed that group differ-
ences were concentrated in Eulaminate-II (35%) and -III (40%) cortex,
defined anatomically, and the default mode network (DMN; 37%),
defined functionally (Fig. 4B). In a complementary approach, we
investigatedMPCmaturation along a low-dimensional cortical axis.We
observed a more pronounced bimodal distribution of loadings along
the principal axis in the group of individuals who developed toward
higher susceptibility. That is, regions were situated toward the differ-
entiated apices rather than themiddle of the axis, reflecting increasing
microstructural similarity to the axis’ anchors. Conversely, the axis was
slightly compressed in the group of individualswho developed toward
more resilient outcomes. Here, more parcels loaded on the middle of
the axis reflecting less synchronization with the anchor pro-
files (Fig. 4C).

Throughout this study, functional connectivity data were used to
contextualize the myeloarchitectural results. Considering the

Fig. 4 | More disruptive reorganization of microstructural profile covariance
(MPC) networks with increasingly resilient mental health outcomes. A Top;
Cohen’s q for group differences in the microstructural Maturational Index (MIMPC;

FDR p <0.05 & 10,000 permutations, p <0.05) indicating a widespread negative
shift (i.e.,moredisruptive reorganizationor less conservativeMPCdevelopment) in
the group of individuals who developed towards more resilient outcomes
(↑∆ResPSF). Group differences were computed via z-tests and significance was
assessed based on both p <0.05 FDR and non-parametric permutation testing
(10,000 permutations; p <0.05). Tests were two-sided. Bottom; A negative shift for
the ↑∆ ResPSF group can reflect three main scenarios: Less conservative develop-
ment (left), more disruptive development (middle), or disruptive development in a
region that exhibits neither disruptive nor conservative development in the full

sample (right; tipping point). B Contextualization of regions with a significant
group difference (in any direction), revealing that differences in MIMPC are more
frequently located in Eulaminate cortex II & III, default mode areas, and regions
exhibiting decoupled microstructural compared to functional development.
C Density plot of axis loadings per group, reflecting a more compressed axis in the
group of individuals who developed towards more resilient outcomes. For scatter
anddensity plots, the↑ΔRESPSF group is depicted in purple and the↓RESPSF group
in blue. Statistical tests were two-sided. Kon Konicortex, Eu-I-III Eulaminate I-III, Dys
Dysgranular, Ag Agranular, DMN Default mode network, FPN Frontoparietal net-
work, VAN Ventral attention network, DAN Dorsal attention network, SM Sensor-
imotor, VIS Visual, LIM Limbic.
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topology of cross-modal congruencyofMIs (Fig. 3G),we observed that
group differences inMIMPC were largely located in regions where MPC
and FC did not follow convergent MI patterns (see Fig. 4B). That is,
group differences were most frequently located in regions exhibiting
conservative MPC but decoupled, disruptive FC development (35%).
The MIFC itself showed subtle group differences in eight confined,
primarily prefrontal regions (Supplementary Fig. S9). Five of these
regions showed less disruptive, three exhibited less conservative
development in the group of individuals who became more resilient
with age.

Together, this suggests that both myeloarchitecture and func-
tional connectivity show marked maturational reorganization tied to
resilient/susceptible changes in psychosocial functioning, establishing
the brain as a key feature of adaptive development.

Discussion
In the current study, we report that intra-individual variation in ado-
lescent psychosocial functioning relative to environmental adversity is
tied to ongoing myeloarchitectural and functional maturation of
association cortices. Here, resilient and susceptible outcomes were
operationalized as comparatively lower or higher levels of psychoso-
cial distress in the face of psychosocial stressors, resulting in a con-
tinuous score that adjusts for variations in stressor exposure at
different time points. We used a dimensional approach aligning with
previous studies that underscore psychosocial adversity as a pivotal
transdiagnostic risk factor that is more predictive of overall psycho-
pathology than discrete symptom domains48,49. In addition, our long-
itudinal design puts emphasis on the dynamic nature of resilient
functioning, combined with myeloarchitectural brain phenotypes that
account for regional variations along cortical depth. Thus, we provide
nuanced and multimodal evidence that protracted maturation of
association cortices is associated with changing abilities to adapt to
psychosocial stressors during adolescence.

Enhanced anterolateral prefrontal myelination links to
increasingly resilient psychosocial functioning
Investigating longitudinal changes in myelin revealed a positive asso-
ciation between ∆MT in anterolateral and orbitofrontal cortex and
changes in resilient psychosocial functioning at medium effect size.
This finding is consistent with previous cross-sectional reports sug-
gesting a particular susceptibility of the ventral prefrontal cortex to
environmental adversity3,22,50 and central role in resilient
adaptation10,48. Here, we extend previous findings on cortical volumes
and functional connectivity toward longitudinal myelin plasticity. A
beneficial effect of enhanced prefrontal myelination may directly be
linked to the optimization of adaptive cognitive strategies facilitating
successful navigation in an ever-changing environment51. That is,
ongoing plasticity of myelination fosters circuit modification and
synchronization through a multitude of parallel mechanisms20. These
may include regulatory influences on axon conductance to optimize
the synchronization of spike arrivals52,53, neuronal metabolism and
excitability54,55, and structuralplasticity14,56. In theprefrontal cortex, the
optimization of circuit efficiency is closely linked to the maturation of
cognitive functions such as executive functions, including emotion
regulation, and enhanced social and cognitive flexibility required for
adaptation57,58. Thus, prefrontal maturation may directly facilitate
resilient psychosocial functioning by fostering cognitive strategies
such as cognitive reappraisal, self-awareness about potential mala-
daptive cognitive biases, or decision making/ problem solving to
evaluate the impact of adverse experiences and, for example, seek
social support. Thus, the acquisition of beneficial cognitive strategies
may therefore mediate the positive association between prefrontal
maturation and resilient psychosocial functioning. Conversely, atte-
nuated prefrontal myelination and impaired executive control have
been linked to transdiagnostic mental health impairments59–61.

Schizophrenia rat models further suggest links between interneuron
hypomyelination and cognitive inflexibility62. It is noteworthy that
adolescents exhibiting increasingly susceptible outcomes in the pre-
sent study did not surpass clinical thresholds. However, current find-
ings indicate that cross-sectional associations between susceptibility
to psychopathological spectra and prefrontal myeloarchitectural
development described in patient and animal data can already be
observed at the level of intra-individual variation in susceptibility.
Lastly, in addition to potential cognitive effects, psychosocial adversity
is likely to elicit a physiological stress response activating the
Hypothalamus-Pituitary-Adrenal axis. The ventral PFC is involved in
and can recursively be affected by physiological stress responses
through glucocorticoid-induced structural remodeling63,64. While the
current data do not allow to test protective effects at the molecular
level, it is possible that increased consolidation of connections
through myelination may enhance physiological resistance to adverse
stressor-induced PFC remodeling.

We probed whether varying levels of myeloarchitectural con-
solidation coincidedwithdifferences in functionalnetworkmaturation
of the identified anterolateral prefrontal region, indirectly suggesting a
potential resistance to stressor-induced remodeling. Indeed, we
observed greater stability of PFC connectivity among individuals who
developed toward more resilient psychosocial functioning. Con-
versely, increasingly susceptible mental health outcomes were asso-
ciated not only with a reduced rate of prefrontal myelination, but also
with a segregation of prefrontal connectivity within abstract cognitive
networks (small global effect, medium regional effects). In normative
development, most prefrontal sub-regions show decreases in global
network embedding during childhood followed by a plateau in early
adulthood65–67. This pattern reflects a combination of increasing inte-
gration within networks of which they are part, such as the DMN and
FPN, but a segregation from other networks such as the dorsal atten-
tion network. Here, the segregation of the anterolateral PFC region
both globally and within the DMN and FPN in individuals manifesting
increasingly susceptible outcomes suggests a closer tie to patterns
reminiscent of earlier developmental stages in both prefrontal con-
nectivity and mean myelin-sensitive MT. Together, increased long-
itudinal myelination of anterolateral prefrontal regions may link to
facilitated adaptation to adversity by optimizing the efficiency of
prefrontal cognitive circuits relevant to flexible adaptation and resis-
tance to adverse remodeling.

Synchronized reorganization of regions higher up the
cytoarchitectonic and functional hierarchies are implicated in
developing resilient psychosocial functioning
Brain alterations linked to both maturational and psychopathological
cortical alterations have been proposed to occur in a network-like
fashion rather than in isolation36,37, underlining the importance of
considering the embedding of local changes in a globally changing
system. Therefore, we studied the cortical topology of synchronized
maturation of intracortical profiles, to then probe whether areas
exhibiting most pronounced reorganization during adolescence are
more strongly implicated in the development of resilient psychosocial
functioning. We described a maturational index reflecting age-related
change as a function of baseline patterns and observed the most
profound reorganization in frontoparietal association cortices. The
MIMPC pattern aligned with a previously established principal axis of
age-related MPC change that suggests fronto-parietal association
cortices to differentiate most profoundly in synchronization with
either dorsal/unimodal or ventral/paralimbic anchors16. Importantly,
themicrostructuralmaturational topology differs to someextent from
the maturational topology that has been previously described for
functional networks45. In particular, cognitive networks such as the
FPN and DMN exhibited not only congruent disruptive development,
but also a structure-function de-couplingmarked by conservativeMPC
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but disruptive FC development. The partially independent remodeling
of functional and structural connectivity has been suggested to shape
functional specialization in transmodal association cortex critical for
executive functions34. At the same time, it underscores the importance
of multimodal studies in understanding the consequences of system-
level maturation.

We observed associations between MI and changes in resilient
psychosocial functioning in microstructural, and regionally confined
effects in intrinsic functional data. Compared to individuals developing
toward higher stressor susceptibility, adolescents developing toward
more resilient outcomes exhibited a negative-shift in themicrostructural
MIMPC across heteromodal association cortices. This negative-shift
reflected both less conservative and more disruptive development.
The observed reduction in conservative development was further
highlighted by a compressed axis of MPC change, with fewer regions
loading toward the apices/anchors of the axis. In contrast to the∆ResPSF
effects observed in MIMPC, MIFC effects were more locally concentrated
in the bilateral prefrontal cortex and presented a positive rather than
negative shift inMIFC in individuals who becamemore resilient with age.
That is, the +∆ResPSF group exhibited less disruptive development in the
PFC. This finding is complementary to microstructural maturational
patterns associatedwith longitudinal change in resilient functioning and
converges with the observation that increasingly resilient outcomes
were associated with more maintained prefrontal functional con-
nectivity (see Fig. 2C). Previous work suggests that regions that aremost
developmentally active during adolescence, primarily association cor-
tices, are most strongly implicated in mental health1. While we generally
observed effects in association cortices, thiswas not exclusive to regions
exhibiting disruptive reorganization. In particular for the micro-
structural MIMPC, effects associated with changes in resilient psychoso-
cial functioning were marked in the temporal cortex, which in turn
exhibited largely conservative development. Our results thus indicate
that longitudinal variation in resilient psychosocial functioning is linked
to altered degrees of myeloarchitectural reorganization, but this was
independent from whether a region generally developed conservatively
or disruptively.

Across the analytical scales and imaging modalities included in
this study, regions implicated in longitudinal change in resilient psy-
chosocial functioning were characterized by their high position along
cortical hierarchies of cytoarchitectonic complexity and functional
network abstraction. That is, findings emerged predominantly in the
cytoarchitectonically complex eulaminate-II and -III cortices, anato-
mically, and the DMN, functionally. Previous research suggests that
structural differentiation of the DMN from networks involved in
sensory-perceptual processing46 facilitates thematuration of cognitive
functions requiring abstraction from the immediate environment57,58.
At the same time, DMN structure and functional connectivity are often
implicated in psychiatric symptom domains, exposure to environ-
mental adversity such as low socio-economic-status, but also to pro-
tective environmental factors such as positive parenting68–70. A
prominent explanation for the recurrent role of the DMN is its invol-
vement in the generation of conceptual mental models of the self in
the environment71–74. Such self-in-context models include self-
referential processing, emotional reappraisal, assigning meaning to
external events and interpreting their causes in reference to one’s own
narrative. Maladaptive internal models and inaccurate attributions of
causality fostering negative interpretations of experiences have been
considered transdiagnostic risk factors for mental health
impairments69,71. Similarly, resilient or susceptible psychosocial tra-
jectories may be tied to continuously evolving self-in-context repre-
sentations. Here, ongoing refinement of the DMN may facilitate and
stabilize beneficial self-referential mental narratives that influence
adaptive strategies in the face of environmental stressors.

Lastly, investigating both an average myelin proxy (i.e., regional
MT) and a more nuanced approximation of intra-cortical profiles

highlighted different facets of the associations between cortical
maturation and change in resilient psychosocial functioning. Never-
theless, both perspectives support a beneficial role of myelin plasticity,
as reflected in higher overall rates of (anterolateral prefrontal) myelin
growth and, when considering depth-specific measures, higher levels of
microstructural reorganization. Across present analyses, individuals
who developed toward more susceptible outcomes showed matura-
tional profilesmore closely tied to patterns associatedwith earlier stages
of adolescence. Conversely, microstructural maturation in individuals
with increasingly resilient outcomes appeared less constrained by
existing patterns, potentially highlighting the need for adaptive altera-
tions to enhance selected cognitive circuits. Overall, it is likely that not
only is themore the better, but that parallel refinement processes occur
at multiple scales. Thus, the current findings demonstrate that adoles-
cents exhibit marked intra-individual variability in resilient psychosocial
functioning relative to environmental adversity that is reflected in both
local and system-level brain maturation profiles.

Limitations, further considerations, & open questions
Our study takes a dimensional approach to environmental adversity
exposure and psychosocial functioning. While differences exist in the
brain correlates of both adversity type50 and symptom domains4, we
believe a dimensional approach enhances ecological validity as inclu-
ded forms of adversity are highly clustered together in the general
population75, have been shown to be associatedwith overlapping brain
structural correlates (dice coefficients up to 0.543,50), and are trans-
diagnostic predictors of overall psychopathology48,49. We acknowl-
edge that our analyses of resilient psychosocial functioning are limited
to the inclusion of only two timepoints. While this allows us to study
longitudinal variation, we note that more timepoints per participant
would be required to estimate trajectories with higher reliability76.
Future studies utilizing e.g., later releasewaves of the Adolescent Brain
Cognitive Development (ABCD) cohort could track longitudinal tra-
jectories over a longer period of time and further assess the question
whether enhanced myelin maturation is also a predictor for adult
mental health49. Next, current evidence suggests that individual dif-
ferences in myeloarchitectural maturation may be a potential neuro-
biological resilience factor, influencing adolescent adaptation to
environmental risk factors. The exact mechanisms underlying a
potential protective effect cannot be clearly elucidated in the current
study due to its correlational nature but may involve increased struc-
tural stability to stress-induced remodeling and enhanced cognitive
maturation. It is likely that resilient psychosocial development is clo-
sely coupled with the attainment of cognitive strategies that facilitate
resilient outcomes77. At the same time, environmental resilience fac-
tors such as social support facilitate resilient outcomes38,49,78, and may
in part exert their protective effect through an impact on brain
maturational trajectories. Resilient outcomes are assumed to rely on a
multi-modal and multi-faceted construct, acknowledging the envir-
onments we live in, but also other psychological variables beyond
clinical symptomatology (such as positive affect, life satisfaction,
personality traits). We cannot clearly disentangle the interaction of
different intrinsic and extrinsic influences contributing to an indivi-
dual’s psychological well-being beyond resilience. While we estimated
resilience/susceptibility by adjusting psychosocial well-being for
adversity exposure - yielding a residualized psychosocial functioning
score - we cannot rule out that derived resilience scores also reflect the
influence of other genetic and environmental factors, as well as noise
or measurement error to a certain degree (see Supplementary Infor-
mation). For example, potential self-report/retrospectivity biases
inherent to measures of well-being and adversity exposure79 would
persist in resilience scores, but arenot causedby the residual approach
toproviding resilience scores. Our longitudinal approachallowedus to
limit confounding effects of individual differences in genetic predis-
positions or environmental circumstances (suchas family composition
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or neighborhood) that are likely to contribute less variability to within-
subject repeated measures than to between-subject cross-sectional
data. Overall, our model (explaining 21% of the variance) controls for
exposure to a similar extent as common resilience models (explaining
21-28% of the variance; see e.g., refs. 38,80,81). We also aimed to
increase the robustness and generalizability of the model by imple-
menting a nested cross-validation and a random forest regression
robust to non-linear andnon-parametric distributions of questionnaire
data. Next, we observed a more skewed distribution of SES in the
imaging sub-sample (Supplementary Fig. S2), suggesting a potential
over-sampling of individuals from a comparatively more affluent
background. Brain-behavior associations described here may thus be
limited by the reduced variance in SES. This common issue in devel-
opmental neuroimaging research82 demands the study of resilience
factors identified by the current study in specific sub-groups, such as
cohorts facing specific economic difficulties, that were under-
represented in the current sample. However, we also note that dis-
tributions inwell-being, as well as other risk exposure assessments, did
not differ between imaging and non-imaging sub-samples, implying
that the over-representation of higher SES participants in the imaging
sub-sample was not associated with a commensurate shift in the dis-
tributionsof risk exposuremeasures thatwereweightedmore strongly
in the prediction of ResPSF. We further acknowledge that this sample is
of respectable but not massive size. The current sample size resulted
from the inclusion of a sample for which adolescent, longitudinal, and
multi-modal imaging including a myelin proxy, as well as in-depth
phenotypic characterization, were available—rather than an a-priori
power analysis. Overall, we found the reported results to be robust to
model parametermanipulation and sub-sampling, and well in line with
the existing literature, highlighting the central role of the PFC in stress
adaptivity and vulnerability9,83, as well as the role of association cortex
maturation in psychiatric vulnerability1,21,22. Moreover, individual dif-
ferences in myelination rates were observed in regions that generally
show the highest rates of myelination during adolescence (Fig. 1B).
This supports a link to the protracted critical period of plasticity in the
prefrontal cortex, extending well into early adulthood and associated
with increased susceptibility to environmental risk factors22. We fur-
ther observed convergence across imaging modalities, for example,
effects on the maturation of prefrontal functional network that sub-
stantively corroborate the observed differences in rates of prefrontal
myelination. However, recent reviews of the replicability of neuroi-
maging studies in the context of insufficient sample sizes84 have cau-
tioned against inflated effect sizes. Therefore, we emphasize that the
current results should be interpretedwith caution, pending replication
in future studies with independent and larger samples, more repre-
sentative of diverse cultural backgrounds and including individuals
typically excluded from healthy samples, such as individuals with
neurodevelopmental disorders, to assess the broader generalizability
of neurobiological resilience factors identified here. Last, com-
plementary to longitudinal approaches aimed at making prospective
predictions of futuremental health outcomes, our currentwork argues
for tracking ongoing developmental trajectories to better understand
of intra-individual variability in susceptibility to environmental risk
factors at different time points in development.

To conclude, the transition to adulthood is considered a parti-
cularly susceptible period for the emergence of mental health symp-
toms. Consistent with prior research suggesting a central role of the
protracted development of association cortices in susceptibility to
psychiatric risk factors21, the current work suggests that intra-
individual changes in psychosocial responses to environmental stres-
sors are associated with the degree of myeloarchitectural plasticity
and cortex-wide reorganization. The dynamic nature of myelin sug-
gests a potential benefit of interventions that target aberrant trajec-
tories in at-risk youth. These may include increased exposure to
environmental resilience factors such as a supportive social

network38,49, but also the facilitation of experience-dependent plasti-
city, such as has been demonstrated for e.g., social/mental training85.

Methods
Study sample
This study included 2245 adolescents and young adults aged 14 to 26
years (54% females;mean age = 19.06 ± 3.02 y) from theNeuroScience
in Psychiatry Network (NSPN86). Participants were recruited in Cam-
bridgeshire and north London in an accelerated longitudinal sampling
design which balanced sex, ethnicity, and participant numbers in five
age strata (14–15, 16–17, 18–19, 20–21, 22–25). All 2245 individuals were
included in behavioral analyses (see Supplementary Fig. S10 for details
on included sub-samples). Participants’ sex was determined based on
self-report. This studywas conducted in accordancewith U.K. National
Health Service research governance standards and participants pro-
vided informed written consent during NSPN data acquisition, for
which ethical approval was granted by the Cambridge East Research
Ethics Committee under REC 12/EE/0250. Participants received
monetary compensation for their participation.

Our neuroimaging analyses of group-level developmental princi-
ples were based on a subsample (n = 199; 416 sessions) of adolescents
who were invited to undergo longitudinal functional and structural
neuroimaging assessments at baseline and a 1 year follow up, with a
subsample of 26 subjects invited for an intermediate six months scan.
Neuroimaging analyses studying intra- and inter-individual differences
with respect to adaptivity were restricted to participants who had at
least two structural (MT)and functional scans after quality control, and
completed all questionnaires included in this study at two or more
timepoints (n = 141; 346 sessions; age stratification at baseline: n = 34/
34/22/37/14; 50.3% female; inter-scan interval = 1.26 ± 0.33 y; Supple-
mentary Fig. S10).

Generation of resilient psychosocial functioning (ResPSF) scores
ResPSF scores were generated in a three-step process (Fig. 1A): (1)
Computation of a general distress score (n = 1533), (2) prediction of
psychosocial distress from environmental adversity measures
(n = 712), and (3) extractions of residuals from the model for partici-
pants with repeated MRI and behavioral data (n = 141). To avoid leak-
age, steps 1 and 2 were based on independent subsamples (Fig. 1A and
Supplementary Fig. S10).

Psychosocial distress scores were based on self-report ques-
tionnaires spanning mental health domains for which emotional and
behavioral symptoms tend to emerge during adolescence and are
associated with commonly diagnosed mental disorders. Following
previous work on latent mental health dimensions in NSPN39, the fol-
lowing mental health domains and questionnaires were included:
Depression (33-item Moods and Feelings Questionnaire; MFQ87), gen-
eralized anxiety (including measures of social concerns, worry, phy-
siological change; 28-item Revised Children’s Manifest Anxiety Scale;
RCMAS88), antisocial behaviors (11-item Antisocial Behavior Ques-
tionnaire; ABQ), obsessive compulsive behavior (11-item Revised Ley-
ton Obsessional Inventory; r-LOI89), self-esteem (10-item Rosenberg
Self-Esteem Questionnaire; RSE90), psychotic-like experiences (Schi-
zotypal Personality Questionnaire; SPQ91), and mental well-being (14-
itemWarwick-Edinburgh Mental Well-Being Scale; WEMWBS92). Please
see Supplementary Information for details on the questionnaires. We
applied a factor analysis (Matlab 2022b) aiming to derive one latent
factor in 1533 individuals. This latent factor correlated highly (r =0. 99)
with the general distress score derived from previously reported Bi-
factor models that additionally include five sub-factors39. In a separate
subsample (n = 712), we then applied the derived item loadings to each
individual’s respective item scores. The sum of item scores multiplied
by item loadings defined subject-level distress scores.

Conceptualizing relativelymore resilient or susceptible outcomes
as lower or higher than expected distress, respectively, given the
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adversity faced, we then predicted distress scores from available
adversity measures. These included: The Life Events Questionnaire
(LEQ93), Child Trauma Questionnaire (CTQ94), Alabama Parenting
Questionnaire (APQ95), Measure of Parenting Style (MOPS96), and
socioeconomic status (as approximated by zip codes/IMD). See Sup-
plementary Methods for details on included questionnaires. For the
prediction, we used a random forest regression in a supervised
machine learning approach implemented in sci-kit learn (v1.2.1, https://
scikit-learn.org, in Python v3.10.9). We applied a nested cross-
validation in which we left all sessions of one subject out in the outer
scheme, i.e., 712 outer folds, and split the remaining data into five
even groups for training, i.e., five inner folds, in each iteration. Per-
formance was estimated based on mean absolute errors and para-
meter optimization was performed for the number of estimators (50,
100, 150, 200, 250, 300) and tree depth (5 to 15). We included a
StandardScaler (z-scoring) to preprocess features within the cross-
validation scheme.

Neuroimaging data acquisition
Magnetic Transfer (MT) data was acquired as a neuroimaging proxy of
myelin content using a multi-parametric mapping (MPM) sequence23

on three identical 3 T Siemens MRI Scanners (Magnetom TIM Trio) in
Cambridge (2) and London (1). A standard 32-channel radio-frequency
(RF) receive head coil and RF body coil for transmission were used.
Anatomical and functional data were acquired on the same day. Neu-
roimaging data acquisition and processing has also been described
previously45,97.

Myelin-sensitive MRI
MPM comprised three multi-echo 3D FLASH scans: predominant T1-
weighting (repetition time (TR) = 18.7ms, flip angle = 20°), and pre-
dominant proton density (PD) and MT-weighting (TR = 23.7ms; flip
angle = 6°). To achieve MT-weighting, an off-resonance Gaussian-
shaped RF pulse (duration = 4ms, nominal flip angle = 220°, frequency
offset from water resonance = 2 kHz) was applied prior to the excita-
tion. For MT weighted acquisition, several gradient echoes were
recorded with alternate readout polarity at six equidistant echo
durations (TE) between 2.2 and 14.7ms. The longitudinal relaxation
rate and MT signal are separated by the MT saturation parameter,
creating a semi-quantitative measurement that is resistant to field
inhomogeneities and relaxation times23,98. Further acquisition para-
meters: 1mm isotropic resolution, 176 sagittal partitions, field of view
(FOV) = 256× 240mm,matrix = 256× 240 × 176, parallel imaging using
GRAPPA factor two in phase-encoding (PE) direction (AP), 6/8 partial
Fourier in partition direction, non-selective RF excitation, readout
bandwidth BW=425Hz/pixel, RF spoiling phase increment = 50°. The
acquisition time was approx. 25min, during which participants wore
ear protection and were instructed not to move and rest. MPM further
comprises a set of other contrasts, such as R2* sensitive to iron con-
tent, yielding complementary insights into different aspects of tissue
micro-architecture in vivo49,99–101. Here, we focused on MT, which is
considered a particularly strong in vivo marker of myelin with a high
spatial correspondence with myelin basic protein and other myelin-
related molecules in the brain, as has been verified by several histo-
logical validation studies24–27. MT has further been demonstrated to
show high reliability102 suitable for the study of individual differences
and brain-behavior associations5,16,100.

Resting-state functional MRI
Resting-state functional MRI (fMRI) data were acquired using a multi-
echo echo-planar imaging sequence (TR = 2.42 s; GRAPPA with accel-
eration factor = 2; flip angle = 90°; matrix size = 64 × 64 × 34;
FOV = 240 × 240mm; in plane resolution = 3.75 × 3.75mm; slice thick-
ness = 3.75mm with 10% gap, sequential slice acquisition, 34 oblique
slices; bandwidth, 2368Hz/pixel; TE = 13, 30.55, and 48.1ms).

Neuroimaging data preprocessing
Microstructure. T1w and MT images were visually inspected for
motion artifacts (such as ringing, ghosting, smearing or blurring) by
experts and scans were strictly excluded if motion artifacts were
detected. Surface reconstructionwasperformedonT1wdata using the
Freesurfer _recon-all_ command (v.5.3.0103). Briefly, the pipeline per-
forms non-uniformity correction, projection to Talairach space,
intensity normalization, skull stripping, automatic tissue segmenta-
tion, and construction of the gray/white interface and the pial surface.
Surface reconstructions/segmentations were edited by adding control
points in FreeSurfer, re-processed, and then underwent quality control
again. If further motion artifacts were detected in this process, the
relevant scans were excluded. MT images were co-registered with
reconstructed surfaces and 12 equivolumetric cortical surfaces were
generated within the cortex (i.e., between the pial and white
surface104). The equivolumetric model takes cortical folding into
account by manipulating the Euclidean distance (ρ) between intra-
cortical surfaces, thereby preserving the fractional volume between
pairs of surfaces (1):

ρ=
1

AðoutÞ # AðinÞ
× ðA inð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αA2 outð Þ

q
+ 1# /ð ÞA2ðinÞ ð1Þ

α = a fraction of the total volume of the segment accounted for by
the surface; A(out) and A(in) = the surface areas of outer and inner
cortical surfaces, respectively.

The outer two surfaces were excluded to avoid potential partial
volume effects (PVE) and MT intensities were extracted from 10 cor-
tical depths at each vertex. In addition, depth-specific PVEs caused by
cerebrospinal fluid (CSF) were corrected for using a mixed tissue class
model105. To this end, a linear model was fitted to each node at all 10
depths (2):

MTðn,sÞ ∼b0 +b1CSFðn,sÞ ð2Þ

where n = node, s = surface. Derived CSF-corrected MT values reflect
the sum of residuals (3):

MTcðn,sÞ =T1ðn,sÞ # ðb0 +b1CSFðn,sÞÞ ð3Þ

and original group averaged MT.
Last, vertices were averaged within 360 bilateral cortical parcels

using the Human Connectome Project (HCP) parcellation atlas that
was mapped from standard fsaverage space to each participant’s
native space using surface-based registration104,106.

Resting-state functional MRI
Multi-echo independent component analysis (ME-ICA107,108) was
applied to the fMRI data to isolate and remove variance caused by
sources that do not scale linearlywith the TRwithin the time series and
are therefore assumed not to represent the blood oxygenation level
dependent (BOLD) contrast. Variance in cerebrospinal fluid was esti-
mated based on ventricular time series and regressed from par-
enchymal time series via Analysis of Functional NeuroImages (AFNI109).
Functional data were co-registered to R1 images, which were derived
from the same MPM sequence as MT data, ensuring spatial alignment
between functional and MT data. Volumes obtained within the 15-s
steady-state equilibration were excluded. Anatomical-functional co-
registration and motion correction parameters were computed using
the middle TE data, and the base EPI image was the first volume fol-
lowing equilibration.Matrices for de-obliquing and six-parameter rigid
body motion correction were computed. Using the LPC cost function
with the EPI base image as the LPC weight mask, a 12-parameter affine
anatomical-functional co-registration was computed. Matrices for de-
obliquing, motion correction, and anatomical-functional co-registra-
tion were concatenated into a single alignment matrix using the AFNI
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tool align_epi_anat.py. The dataset of each TE was then slice-time
corrected and spatially aligned through repeated application of the
alignmentmatrix. Datawasparcellated into the same360bilateralHCP
cortical regions applied to structural data within which regional time
series were averaged across voxels of each respective parcel. More-
over, a band-pass-filter (range: 0.025 to 0.111 Hz110) was applied to the
regional time series using discrete wavelet transform. Following
quality control, regional time series were z-scored and 30 regions,
mainly in paralimbic areas, were excluded due to low z-scores
(Z < 1.96) in at least one participant. A functional connectivity (FC)
matrix was generated for each subject by computing Pearson’s cor-
relation coefficients between all 330 remaining parcels, yielding a
330× 330 matrix. Correlation coefficients were then z-transformed by
Fisher’s transformation111). Hence, FC units represent standard devia-
tions of the normal distribution. Lastly, to avoid any residual effects of
motion on FC, each edge/Z-score was regressed on each participant’s
mean frame-wise displacement. All further analyses were based on
derived motion-corrected Z-scores (i.e., the residuals of this
regression).

In total, 36 scans were excluded due to high in-scanner motion
[mean framewise displacement (FD) > 0.3mm or maximum FD> 1.3
mm], poor surface reconstructions, co-registration errors, and/or
extensive fMRI dropout.

Intra-individual change
Intra-individual change in mean and layer-wise MT, as well as resting-
state functional connectivity (FC), was assessed by calculating the ∆
between first and last MRI sessions: MTT2-MTT1 or FCT2-FCT1 respec-
tively, for each parcel. ∆s were winsorized to +/− 3 SD to account for
outliers.

Associationbetweenmyeloarchitectural and intrinsic functional
maturation and change in resilient psychosocial functioning
The association between change in ∆RESPSF and ∆MT was assessed by
applying a general linear model to each parcel (4):

ΔMT parcelð Þ∼ 1 + βΔResPSF # ΔResPSF +βmeanResPSF # meanResPSF
+βage # age+βsex # sex +βsite # site + ϵ

ð4Þ

Models were fitted in SurfStat112 (Matlab 2022b) adjusting for
mean age (i.e., (Agebaseline+ Agefollow up)/2) and mean ResPSF (i.e.,
(RESPSF at baseline + RESPSF at follow up)/2) across sessions, sex, and site.
Before fitting the model, we adjusted ∆ResPSF and ∆MT for inter-ses-
sion-intervals, which varied between participants, by fitting linear
regressions of ∆age. This was done separately for imaging and beha-
vioral data to adjust for the fact that behavioral and imaging data were
mostly not collected on the same day. All statistical tests reported
throughout this study comprised two-sided testing. Significance was
assessed by non-linear permutation testing (10.000 permutations of∆
and mean ResPSF and FDR correction of derived p-values at α <0.05).
We then stratified the unthresholded t-map according to a cytoarchi-
tectonicmap defining six dominant cortical types28, to reveal potential
systematic links between cortical architecture and effects associated
with changes in resilient psychosocial functioning.

We ran two post-hoc analyses based on the region of interest
(ROI) defined by parcels that show a significant ∆ResPSF *∆MT asso-
ciation. First, we tested whether significant associations between
∆ResPSF and∆MTwere layer-specificbyfitting the same linearmodel to
MT values at each of the 10 surfaces, rather than the mean across
surfaces. This was done to reveal a potential specificity of effects based
on cortical depth, not to statistically confirm the observed association
again. Next, we addressed the question of whether regions showing
differences in ∆MT as a function of ∆ResPSF also exhibit different
functional connectivity. To this end, we computed global FC of the ROI
as degree centrality (i.e., the sum of all connections) as well as a seed-

based FC analysis defining the ROI as a seed. As described for the ∆MT
analysis, we regressed out the effects of inter-session intervals, fitted
the same linearmodel as described above, and assessed significance of
the seed-based analysis by non-linear permutation testing (10,000
permutations of ∆ and mean ResPSF + FDR correction of derived p-
values at α <0.05). Last, we stratified the resulting t-map according to
the Yeo 7 Network Atlas47 to reveal systematic effects within specific
intrinsic functional networks.

System-level maturation
We studied system-level maturation based on bothmyeloarchitectural
and functional data. In order to assess the cortical topology of MT
maturation, we computed a microstructural profile covariance (MPC)
matrix and studied its change with age. MPC is based on myeloarchi-
tectural profiles across cortical depths and is generated via partial
correlations between nodal MT profiles of two given regions, cor-
rected for the mean MT intensity across intra-cortical surfaces
(Fig. 3A). An underlying assumption of this approach is that inter-
regional similarity predicts axonal cortico-cortical connectivity29,33,113.
MPC has previously been shown to align well with post-mortem
assessments of inter-regional microstructural similarity30, and depth-
dependent shifts in cytoarchitectonic features such as cell densities or
myelin characteristics have been linked to architectural114 complexity
and cortical hierarchy115.

First, we computed amicrostructural and functional Maturational
Index (MI), whichhas been shown to be a robustmarker for adolescent
modes of reorganization45 sensitive to individual differences97 in
functional connectivity. To compute the MI, LMEs were fitted to each
edge of the MPC and FC matrices, assessing effects of age and
including sex, site, and repeatedmeasures of the same individual in the
model (5):

MRIðk,jÞ∼ 1 +βage # age+βsex # sex+βsite # site+ γsubject # ð1jsubjectÞ+ ϵ

ð5Þ

Where k and j are two nodes of the matrix. The MI captures the
signed Spearman’s correlation between predicted baseline patterns, at
age 14, and rate of change, age 14–26, of all edges that connect a given
node to all other nodes. Thus, it reflects a reorganization of network
embedding.

Baseline values at age 14 for each group (+∆ResPSF /-∆ResPSF),
MRI14 group, were extracted for MPC and FC matrices as follows (6):

MRI14 = 1 +βage # 14 +βage # 14 +βsex # ð1=2Þ+βsite1 # ð1=3Þ+βsite2 # ð1=3Þ

ð6Þ

Whereas the rate of change MPC14-26 or FC14-26 simply reflects the
β-coefficient of age (7):

MRI14$26ðk,jÞ=βage ð7Þ

At each node, we then computed the row-wise Spearman’s ρ
between ranked extracted parameters reflecting baseline and change
parameters of all edges (i.e., 360 for MPC, 330 for FC) of a specific
node. A positive correlation indicates that a given region’s edges that
were already similar in either their myeloarchitectural or functional
profile became more similar with development, this is termed ‘con-
servative’ development. Conversely, a negative correlation reflects
reorganization, edges that were similar at baseline differentiate, or
edges that were dissimilar at baseline integrate, which is termed ‘dis-
ruptive’ development. We computed normative MIs for MPC and FC
across all participants (n = 199) using all existing sessions (416 ses-
sions). To probe convergence and divergence of structural compared
to functional maturational modes, we further tested overlaps between
regional MIs (individually thresholded at pFDR <0.05).
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Next, we contextualized the MIMPC with a previously established
measure of global organization of microstructural maturation: The
MPC principal axis of age effects16. To this end, we applied the same
LME as defined in Eq. 5 to each edge of the MPC matrix, assessing the
main effect of age on inter-regional microstructural similarities. Dif-
fusion map embedding was then applied to the matrix of t-values
(thresholded at 90%), revealing a cortex-wide organizational axis of
synchronized age effects. Regionswith a similar loading on this axis are
similarly embedded in a network of inter-regional synchronization of
age effects, whereas regions at the apices of the axis show maximally
different change patterns.

Group-level differences in system-level maturation
Last, we aimed to study differences in system-level maturation asso-
ciated with intra-individual changes in adaptivity. Because the MI is
computed from parameters extracted from group-level general linear
models, it was required to split the sample into two groups. Thus, the
sample was divided into adolescents who showed increasingly resilient
outcomes (+∆ResPSF; n =81, 193 sessions; 48% female, 18.93± 2.81 y at
baseline) and adolescents who became more susceptible with age
(-∆ResPSF n =60; 153 sessions; 53% female, 18.84± 2.87 y at baseline).
MIs were computed separately for each group, and the resulting maps
were subtracted from each other (+∆ResPSF - (-∆ResPSF)). Significance
was tested using two approaches that were combined for thresholding:
(1)Wefirst appliedZ-tests testing for significant differences between the
correlation coefficients, i.e., the difference between group MIs divided
by the SE of the difference in MIs, as has been done previously97 (8).

z =
MI+ΔRes PSF !MI!ΔRes PSF

SEMI+ΔRes PSF!MI!ΔRes PSF

=
MI+ΔRes PSF !MI!ΔRes PSFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEMI+ΔRes PSF

2 + SEMI!ΔRes PSF

2
q ð8Þ

Derived p-values were FDR-corrected at pFDR <0.05.
(2) Next, to control for the effects of sampling bias and potential

effects of differences in group size or demographics, we performed
non-parametric permutation testing, by shuffling group allocation
10,000 times while considering age and sex distributions as well as
group size differences (see Supplementary Fig. S11). Finally, we
depicted groupdifferences as significant only if theywere significant in
both FDR-corrected p-values derived from Z-tests (p <0.05), and non-
parametric permutation testing (p < 0.05).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral resilience scores and microstructural profiles gener-
ated in this study have been deposited on Github and Zenodo under
https://github.com/CNG-LAB/cngopen/tree/main/adolescent_
resilience/ScrFun and https://zenodo.org/records/11486553. The item-
level questionnaire data as well as unprocessed imaging data can be
obtained from https://portal.ide-cam.org.uk/overview/6/managed or
https://www.repository.cam.ac.uk/handle/1810/264350. The pro-
cessed functional connectivity data are available at https://zenodo.
org/records/6390852. The depicted data generated in this study are
provided in the Supplementary Information/Source Data file. Source
data are provided with this paper.

Code availability
Custom code generated for this project was made publicly available
under https://github.com/CNG-LAB/cngopen/tree/main/adolescent_
resilience/ScrFun and https://zenodo.org/records/11486553. Our analy-
sis code makes use of open software: Gradient mapping analyses were
carriedoutusingBrainSpace (v.0.1.2; https://brainspace.readthedocs.io/
en/latest/) and surface visualizations were based on code from the

ENIGMA Toolbox (v.1.1.3; https://enigma-toolbox.readthedocs.io/en/
latest/116) in combination with ColorBrewer (v. 1.0.0; https://github.
com/scottclowe/cbrewer2), and the Violin Plot Toolbox (Holger Hoff-
mann (2024); https://www.mathworks.com/matlabcentral/fileexchange/
45134-violin-plot). Statistical analyses were carried out using SurfStat
(https://www.math.mcgill.ca/keith/surfstat/). Equivolumetric surfaces
were computed using code from: https://github.com/MICA-MNI/
micaopen/tree/master/a_moment_of_change16. Z-tests were performed
using the compare correlation coefficients function (Sisi Ma (2024).
compare_correlation_coefficients (https://www.mathworks.com/
matlabcentral/fileexchange/44658-compare_correlation_coefficients).
Python: We made use of the following packages: scipy 1.10.1, sklearn
0.0.post1, matplotlib 3.7.1, numpy 1.24.2, pandas 1.5.3, seaborn 0.11.0.
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6 Summary and Conclusion 

6.1 Overall synopsis  

The goal of this thesis was to reveal systems-level principles of cortical organization that may shape 

alteration patterns relevant to transdiagnostic psychopathology. I specifically aimed to characterize how 

cortical alterations co-occur across regions, integrating insights from cortical architecture and 

developmental susceptibility. To meet this objective, I leveraged systems-level and multiscale 

approaches in two complementary studies. Study 1 proposes that CT alterations across six mental 

disorders are organized in a network-like fashion and along large-scale cortical axes that recapitulate 

the cortex's microstructural, transcriptomic, and functional diversity. These findings suggest that 

cortical regions with similar neurobiology share a common vulnerability across mental disorders, 

providing insights into the emergence of transdiagnostic alteration patterns. Study 2 revealed that the 

efficacy with which adolescents can navigate psychosocial challenges varies within an individual and 

is associated with protracted cortical refinement processes at multiple scales. Specifically, individuals 

whose resilient functioning increased with age exhibited a higher rate of anterolateral prefrontal cortex 

(PFC) myelination, stabilization of its connectivity within the DMN, and stronger microstructural 

reorganization across widespread association cortices. Collectively, current findings support the notion 

that multiple neurobiological features and spatiotemporal organization schemes act in concert to 

constrain cortical alterations relevant to transdiagnostic psychopathology. While the two studies took 

different methodological approaches - one focused on global clinical cohorts, the other on 

developmental susceptibility - several key findings converge (Figure 3):  

1) Both studies provide a systems-level understanding acknowledging how regional change, 

whether developmental or pathological, is connected to change in other regions with similar 

neurobiological properties or developmental trajectories. In the cross-disorder comparison, these co-

alteration patterns were found to be intrinsically organized, like a biologically informed coordinate 

system. In the adolescent sample, variation in susceptibility/resilience was reflected in widely 

synchronized myeloarchitectural reorganization and functional network consolidation. Hence, current 

findings highlight coordinated processes in pathology and susceptibility, beyond regional effects.  

2) Findings were concentrated in association cortices. Prefrontal and temporal regions exhibited 

the most distinct transdiagnostic co-alteration profiles and represented potential epicenters that may 

constrain structural alterations within their networks. Similarly, regions implicated in adolescent 

susceptibility/resilience were primarily located in late-maturing association cortices. These exhibited 

protracted consolidation through myelination and functional network refinement within DMN and 

frontoparietal networks. This prominent role of association cortices in dimensional psychopathology is 

in line with a large body of literature (e.g., Paus et al., 2008; Taylor et al., 2023). 
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3) Both studies link left anterolateral PFC connectivity to transdiagnostic vulnerability. CT co-

alterations in patient samples mapped to the functional network of the left pars orbitalis, defining it as 

the strongest epicenter. At the same time, attenuated myelination and changes in anterolateral PFC 

connectivity already appeared to confer susceptibility during adolescence. This region’s network 

embedding was thus associated with mental health variability across youth and clinical populations. 

4) While Study 2 specifically targeted developmental processes, transdiagnostic axes identified 

in Study 1 may indirectly capture synchronized developmental aberrations as well, giving rise to 

similarities in co-alteration profiles. The frontotemporal axis aligned with transcriptomic patterns of 

developmentally enriched genes, and both axes combined differentiated functional networks that follow 

different developmental trajectories (e.g., sensory and cognitive control networks; Sydnor et al., 2021). 

Overall, our findings demonstrate how integrative, multimodal approaches provide insight into 

spatiotemporal neurobiological features that may guide cortical alterations in mental illness. 
 

 
Figure 3. Integrative, multiscale approaches provide insights into spatiotemporal neurobiological features 

that may guide cortical alterations in dimensional mental health. 
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6.2 Integration with the literature 

6.2.1 Cortical alterations in mental disorders recapitulate cortical topography 

Current findings support the notion that spatial co-alteration patterns are systematically represented 

across mental disorders because they similarly recapitulate features of the underlying cortical 

architecture. This is independent of differences in the magnitude of CT alterations between disorders. 

Instead, it emphasizes whether any two regions are similarly (un)affected in one disorder, and whether 

this relationship, or co-alteration, is a consistent feature across disorders. In line with the assumption 

that pathological patterns are constrained by connectome organization and may recapitulate 

physiological stress on hubs (Fornito et al., 2015; Vanasse et al., 2021), regions that were topologically 

central to co-alteration networks were co-located with normative functional connectivity hubs. 

Moreover, systematic similarities in CT alterations aligned with cytoarchitectural, transcriptomic, and 

functional similarities, likely recapitulating their differential susceptibility.  

During the work on this thesis, insights on the alignment between transdiagnostic patterns with 

underlying features of cortical architecture have been extended to further neurobiological layers. 

Adding to the cytoarchitectural and functional similarities we observed between similarly affected 

regions, Hansen et al. (2022b) reported that this similarity extends to neurotransmitter distribution and 

gene expression in a broader range of neuropsychiatric conditions. Their findings corroborate ours in 

that regions embedded within the same functional network are more likely to change in similar ways. 

However, they also identified molecular similarity to be more predictive of transdiagnostic vulnerability 

than connectomic markers. Stronger molecular influences were specifically found for MDD and ADHD, 

while SCZ, BD, and OCD showed a stronger role of connectomic predictors. This may explain why, in 

our findings, transdiagnostic epicenters mostly captured SCZ, BD, and OCD patterns. Park et al. (2022) 

and Patel et al. (2021) further describe a segregation of CT alterations in sensorimotor regions from 

transmodal/paralimbic regions, with paralimbic regions most frequently affected across disorders. In a 

collaborative study (Park et al. 2022), we report that this pattern was spatially aligned with 

microstructural differentiation and the distribution of serotonin and dopamine receptors. The axis also 

showed spatial convergence with gene expression patterns related to prenatal axon guidance and 

postnatal synaptic activity and plasticity (Patel et al., 2021). These findings converge with Study 1, 

which found that genes with spatial expression profiles resembling the frontotemporal co-alteration axis 

were overexpressed in the cortex during early/mid-fetal development and late childhood/adolescence. 

While we did not further annotate these genes, Patel et al. observed that psychiatric risk genes were 

primarily enriched in those expressed prenatally, whereas postnatal genes were linked to plasticity and 

susceptibility to environmental influences. The observed spatial axes may thus further reflect 

similarities in developmental susceptibility, such that synchronized developmental deviations are 

similarly embedded in co-alteration networks. 
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An intriguing convergence across analyses in Study 1 is that epicenter likelihood was highest 

in prefrontal and temporal regions, which were also located at the apices of the principal co-alteration 

axis. This segregation suggests maximally different contributions to shaping cortex-wide patterns. It 

should, however, be noted that the term epicenters is adopted from neurological disorders, including 

neurodegenerative conditions, where epicenters denote origins of progressing structural change and 

might involve trans-synaptic spreading of pathogens (Zhou et al., 2012). In neurodevelopmental and 

psychiatric research, this concept rather refers to the suspicious accumulation of pathological alterations 

in the connectivity profile of specific regions. This notion aligns with observations that structural 

alterations in various mental disorders tend to be distributed yet coordinated within shared networks 

(Segal et al., 2023; Taylor et al., 2023). Correspondingly, prefrontal and temporal epicenters identified 

in Study 1 capture co-occurrences of alterations within their networks. They may thus differentially 

shape pathological patterns but, from a methodological perspective, cannot inform about the origins of 

potential progression patterns. Intriguingly, a recent investigation of SCZ subtypes has identified such 

independent spatiotemporal progression patterns of grey matter alterations: one starting in the left 

inferior frontal gyrus (IFG) and spreading via broader fronto-insular regions, and one starting in the 

hippocampus, spreading via subcortical and temporal regions (Jiang et al., 2024). Despite the marked 

methodological differences, findings by Jiang et al. and ours show strikingly convergent evidence for 

differentiable epicenters in the left IFG and mediotemporal/limbic cortex in a psychiatric context. Jiang 

et al. further show that frontal and temporal progression patterns were associated with different 

symptom profiles, which we could not test in our group-level analysis. 

Lastly, Hansen, et al. (2022b) defined transdiagnostic epicenters slightly differently, as hubs of 

networks of affected regions. This revealed partial overlaps with our co-alteration hubs and functional 

epicenters, e.g., in the angular gyrus and ventral temporal cortex. However, they also report a high 

epicenter likelihood in the motor cortex. Observed differences may be driven by the inclusion of 

epilepsy in their sample, for which sensorimotor epicenters have previously been described by Larivière 

et al. (2020). This further raises the question of the specificity of the observed epicenters, and their 

potentially different conceptual role in psychiatric compared to other brain pathologies. Overall, our 

findings converge with other integrative multiscale studies, suggesting that transdiagnostic cortical 

alteration patterns are constrained by the cortex’s neurobiological organization. 

 

6.2.2 Adolescent susceptibility to adversity links to asynchronous cortical consolidation 

Our longitudinal study (Study 2) delineated the role of anterolateral PFC myelination, its network 

embedding, and the global myeloarchitectural reorganization of association cortices in adolescent 

resilience and susceptibility. This pertains particularly to myelin maturation in regions situated at the 

apex of a previously proposed maturational axis (Larsen et al., 2023; Norbom et al., 2021). This axis 

describes the spatiotemporal unfolding of plasticity windows and myelination towards the late-maturing 
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association cortices. From a neurobiological perspective, our findings thus align with the notion that 

cortical susceptibility peaks when exposure to risk factors temporally coincides with increased 

plasticity, particularly in areas involved in processing or reacting to risk factor exposure (Cooper & 

Mackey, 2016; Parkes et al., 2021; Paus et al., 2008). Accordingly, the increasing susceptibility levels 

we observed in individuals exhibiting attenuated myeloarchitectural consolidation may be explained by 

the extended time windows during which aberrations in network refinement can occur. It is, however, 

important to note that developmental consolidation through myelination does not solely imply a 

restriction of plasticity. Myelin is also adaptive and thus somewhat plastic in itself (Xin & Chan, 2020). 

This property facilitates cognitive refinement by modulating circuit efficiency and network dynamics 

to learn and respond to the ever-changing environment (Mount & Monje, 2017). Findings may thus not 

purely reflect variability in stability, e.g., to protect against stress-induced remodeling (McEwen et al., 

2016). They may also imply adaptive change to environmental demands by enhancing beneficial 

circuits.  

In addition to neurobiological susceptibility, biopsychosocial approaches propose that different 

types of adversity constitute transdiagnostic risk factors because they target cognitive functions 

implicated in several disorders (Etkin et al., 2013; McTeague et al., 2017). For instance, impaired 

executive functions are associated with multiple types of adversity, are a transdiagnostic predictor of 

psychopathology, and correlate with delayed development of left anterolateral PFC connectivity (Etkin 

et al., 2013; McTeague et al., 2017; Xie et al., 2023). The maturation of executive functions, such as 

cognitive flexibility and emotion regulation, has been linked in particular to prefrontal circuit 

refinement (Nelson & Guyer, 2011; Teffer & Semendeferi, 2012). However, more widespread 

association cortex reorganization, which involves its segregation from externally oriented networks, has 

also been implicated in the maturation of abstract cognitive functions (Baum et al., 2017). While Study 2 

does not measure changes in cognition, the attainment of potentially beneficial cognitive skills relies on 

similar maturational processes as those we found to be implicated in resilience/susceptibility. Likely, 

the two domains are closely intertwined, such that the maturation of adaptive and cognitive resources, 

including emotion regulation strategies and cognitive flexibility, may facilitate the successful navigation 

of psychosocial challenges. Taken together, our findings provide empirical and longitudinal evidence 

that regions maturing later in the spatiotemporal maturational hierarchy are implicated in the adaptation 

to transdiagnostic psychosocial risk factors in adolescence. The modulation of cortical plasticity/ 

susceptibility and the facilitation of cognitive refinement are likely underlying mechanisms.  

6.3 Broader implications, future directions, and further considerations 

The growing burden of mental illness is a global phenomenon that increasingly affects youth 

populations (Arias et al., 2022; Kieling et al., 2024). Here, comorbidity is the rule rather than the 

exception, with about 50% of psychiatric patients meeting criteria for more than one mental disorder 
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(Caspi et al., 2020; Kessler et al., 2005). Fortunately, the increasing attention paid to transdiagnostic 

research coincides with the rise of open science, big data, and global collaborative initiatives. The 

current work is embedded in these initiatives, integrating data from international and more generalizable 

samples with multiscale analytical approaches.  

 

6.3.1 Integrating transdiagnostic perspectives and psychiatric variability 

Our efforts to elucidate transdiagnostic principles complement rather than contradict disorder-specific 

research. In Study 1, we observed that CT alterations in disorders with a typically earlier onset, such as 

ASD and ADHD (Solmi et al., 2022), aligned most strongly with transdiagnostic co-alteration axes. 

Conversely, transdiagnostic epicenters and hubs showed the strongest overlaps with those observed in 

SCZ, which is often considered a disconnection syndrome (Friston et al., 2016). We generally observed 

that disorders were clustered according to their alignment with transdiagnostic patterns. Thus, while we 

primarily investigated transdiagnostic phenomena, we also observed differences concerning which 

brain organizational features best recapitulated disorder-specific patterns. The coexistence of common 

organizational patterns and differential alignment of individual disorders with these patterns is 

consistent with existing transdiagnostic constructs that suggest the graded co-expression of disorder-

specific features alongside generalized spectra (Caspi et al., 2014; Kotov et al., 2017).  

Study 1 is primarily concerned with shared features between disorders, while transdiagnostic 

phenomena are arguably also driven by heterogeneity within disorders. Disentangling this heterogeneity 

using individual-level data was not possible in Study 1, as it leveraged well-powered but group-level 

meta-analytic effect size maps. While this approach hindered the study of demographic or clinical 

variation in observed patterns, it promoted global accessibility and representation, as participating 

institutions were not required to share sensitive or high-dimensional data. Yet, research focusing on 

single disorders has revealed marked variability and potential neurobiological subtypes within 

diagnostic categories (Jiang et al., 2024; Segal et al., 2023; Sun et al., 2023). Embracing and 

characterizing this variability may lead to the data-driven identification of dimensional transdiagnostic 

subtypes in line with RDoC principles (Insel et al., 2010; Segal et al., 2024). This calls for future 

research investigating between-disorder similarities and within-disorder heterogeneity in an integrated 

fashion. Semi-supervised clustering approaches yielding dimensional neuroimaging phenotypes (Yang 

et al., 2022) may serve this goal. If applied to large transdiagnostic samples, derived subtype 

probabilities could reveal neuroimaging patterns that simultaneously differentiate within and cut across 

diagnostic categories. Moreover, longitudinal and prospective studies may elucidate whether observed 

transdiagnostic co-alteration axes are in fact spatiotemporal (progression) axes. These efforts would 

further reveal whether cross-sectional co-alteration patterns reflect synchronized developmental 

aberrations. Lastly, it remains an open question how changes in symptom profiles across the lifespan 

(Caspi et al., 2020) may align with transdiagnostic patterns.  
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6.3.2 Supporting youth mental health through neurodevelopmentally informed interventions 

Longitudinal analyses in Study 2 were focused on adolescence and young adulthood, given the 

heightened vulnerability to the emergence of psychiatric symptoms during this period (Paus et al., 

2008). The global increase in mental health challenges among adolescents and the impact of 

developmental deviations on long-term mental health underpin the urgent need to identify preventive 

mechanisms that target vulnerable developmental periods (Conradt et al., 2021; Kieling et al., 2024). 

Current findings link variation in susceptibility to psychosocial adversity to variation in nuanced and 

multiscale association cortex refinement – a process that may represent windows of both risk and 

opportunity (Larsen et al., 2023; Tooley et al., 2021). Crucially, this variation was observed 

longitudinally at the individual level, underpinning the dynamic nature of resilient functioning (Kalisch 

et al., 2017) and implying the potential for supportive interventions. Here, particularly social support, 

loving caregivers, and enriched environments have been shown to foster positive mental health 

outcomes amidst adversity exposure and facilitate normative development (McLaughlin et al., 2020; 

Van Harmelen et al., 2017; VanBronkhorst et al., 2024). Moreover, environmental enrichment in a 

social context, for instance, through accessible exercise interventions (Halperin & Healey, 2011), but 

also mindfulness training (Valk et al., 2023), and cognitive behavioral therapy (Yoshimura et al., 2017) 

have the potential to impact brain structure and function.  

Interventions may be particularly effective when administered while the circuits involved in 

adaptive responses are still plastic. Thus, supporting resilient functioning during vulnerable 

developmental periods may be facilitated by acknowledging neurodevelopmentally informed models 

and the timing of adversity exposure. Such models may track malleable developmental stages at the 

individual level, for instance, through normative modeling (Marquand et al., 2024). Here, not only 

myelin measures could be useful indicators of cortical consolidation. Measures of intrinsic cortical 

activity have also been proposed to reflect consolidation through transitions from synchronized high-

amplitude fluctuations to weaker and sparser signals (Martini et al., 2021; Sydnor et al., 2023). 

Capturing developmental stages at the individual level can inform when and where circuits are most 

malleable and potentially receptive to supportive actions and can be extended to other life phases. 

Lifespan approaches may highlight the relevance of different adaptive mechanisms in early childhood 

or adult neurodegeneration. These should also account for the different types of adversities most 

prevalent in different life phases, such as social isolation in aging. Ultimately, assessing 

resilience/susceptibility via deviations from predicted mental health scores is rooted in the continuous 

dose-response relationships between stressor exposure load and expected mental health impairment 

(Hamby et al., 2021; Kalisch et al., 2017). As such, it can similarly be applied to cohorts facing more 

pronounced adversity and clinical populations. That is, we identified maturational patterns that may 

promote beneficial responses to arguably more common types of adversities faced in a general 
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population sample. It remains a question for future research whether these are similarly beneficial in 

high-risk cohorts and help maintain general functioning in clinical samples.  

In summary, current findings highlight the dynamic nature of resilience/susceptibility and how 

it is intertwined with the marked changes associated with adolescent cortical maturation. The 

pronounced role of late-maturing association cortex refinement encourages tailored interventions to 

address the asynchronous development and variability in the malleability of the cerebral cortex.  

6.4 Conclusion 

This thesis characterizes systematic cortical patterns associated with dimensional mental health 

impairments and embeds them in the context of cortical architecture and developmental trajectories. 

Based on large-scale cross-disorder comparisons and longitudinal developmental models, findings 

indicate that (1) spatially inter-related pathological alterations recapitulate the neurobiological 

similarity between regions as a transdiagnostic feature, and (2) ongoing myeloarchitectural refinement 

of association cortices during adolescence links to dynamic changes in resilient psychosocial 

functioning. Like an intrinsic cortical coordinate system, spatiotemporal constraints to transdiagnostic 

alterations may provide a framework that captures systematic cortical alteration patterns and allows for 

the integration of future psychiatric neuroimaging findings. Yet, open questions remain concerning the 

representation of within-disorder heterogeneity in transdiagnostic findings, potential temporal 

progressions of co-occurring brain structural alterations, and the generalizability of the role of 

association cortex consolidation in resilience/susceptibility across different cohorts. Meanwhile, global 

neuroscience continues to facilitate the collaborative aggregation of representative samples and 

multimodal analytical approaches. These efforts pave the way for nuanced and generalizable insights 

into the neurobiological underpinnings of mental health variability.  
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Supplementary Methods 

 
Population connectivity data 

 

Population connectivity data was derived from a healthy young adult sample (n=207; 83 males, mean 

age±SD=28.73±3.73 years, range=22-36 years) from the Human Connectome Project (HCP; Van Essen 

et al., 2012). Resting-state functional data underwent distortion and motion corrections, intensity 

inhomogeneity corrections and intensity normalization, brain extraction, normalization to MNI152 

space and projection onto the cortical surface. Pre-processing of diffusion MRI data included b0 

intensity normalization as well as corrections for head motion, susceptibility distortion and eddy 

currents. Both functional and structural connectivity data was parcellated according to the Desikan-

Killiany atlas (Desikan et al., 2006). 

Subject-level functional connectivity matrices were generated by pair-wise correlations 

between time series of 68 cortical parcels and 12 sub-cortical structures. Z-scored subject-level data 

was accumulated to derive a group-average functional connectome (Larivière et al., 2021). Structural 

connectivity matrices included in the ENIGMA Toolbox (Larivière et al., 2021) are based on 

anatomically constrained tractography, where reconstructed streamlines were generated for 68 parcels 

and 12 sub-cortical structures. Using distance-dependent thresholding, a group-average structural 

connectome was derived and log-transformed.  

 

Spin tests 

 

Wherever possible, we implemented spin tests as included in the ENIGMA Toolbox to assess the 

significance of spatial similarities via permutations. Spatial permutation tests correct for auto-

correlations between smooth spatial maps by generating null models of respective spatial overlaps. That 

is, coordinates of cortical data are inflated to a sphere and rotated 1000 times, matching phenotypic data 

to different parcels in every permutation (Alexander-Bloch et al., 2018; Larivière et al., 2021). This step 

is repeated for both maps. Significance is determined by testing initial correlation coefficients against 

the null distributions retrieved by correlating rotated spatial maps.  
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Supplementary Discussion 

 

Association between co-alteration hubs, shared susceptibility, and epicenters 

 

For a better understanding of what is reflected in transdiagnostic co-alteration hubs (Supplementary 

Figure S1A), we further examined their association with the topography of shared susceptibility and 

cortical thickness increases compared to decreases. First, we took the absolute Cohen’s d maps for each 

disorder and rescaled each map between 0-1 to get the spatial patterns of illness effects independent 

from offsets in average effect between disorders. We then took the mean of the six resulting maps to 

receive a “hit map”, where regions with values close to 6 (due to the number of included disorders) are 

most strongly and consistently affected across disorders (Supplementary Figure S1B). Second, we 

thresholded each Cohen’s d map to get the top 20% percent of regions showing thickness decreases or 

increases, respectively. We then binarized and summed these maps to observe which regions most 

strongly and consistently show thickness increases or reductions across disorders (Supplementary 

Figure S1C&D). Last, we computed potential disease epicenters as described in the Main text using 

the “hit map” instead of co-alteration hubs to examine to which degree epicenters indeed relate to shared 

impact rather than coordinated impact (Supplementary Figure S1E&F). 

 

Robustness of cross-disorder co-alteration network hubs 

 

In order to assess stability of cross-disorder co-alteration hub maps, we recreated hub maps based on 

cross-disorder inter-regional correlation matrices thresholded at 90%, 70% and 50%. All three 

alternative hub maps correlated significantly with original co-alteration hubs (90% threshold: r = 0.78; 

70% threshold: r = 0.91; 50% threshold: r = 0.62; all pspin < .0001). Correcting the cross-disorder co-

alteration matrix for sample sizes via a partial correlation did not impact resulting hubs (correlation of 

n-corrected co-alteration hub map with original co-alteration hub map: r = 0.89, pspin < .0001; 

Supplementary Figure S2A). 

 

Robustness of transdiagnostic gradients 

 

To assess robustness of the first two transdiagnostic gradients, we compared them to gradients derived 

from manipulating analysis steps in the gradient computation and changing parameters in the 

BrainSpace Toolbox (Vos de Wael et al., 2020) (see Supplementary Figure S2B). First, since there 

were generalized differences in the strength of disease impact on cortical thickness across disorders, we 

mean-corrected the initial correlation matrix by using a partial correlation coefficient. Gradients 

computed based on this mean-corrected matrix correlated highly with original gradients (G1: r = 0.94; 

G2: r = 0.87; both pspin < .0001). Second, original gradients correlated highly with gradients derived 
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using a different non-linear dimension reduction method (Laplacian eigenmap: G1: r = 1; G2: r = 0.99; 

both pspin < .0001) or a linear dimension reduction method (principal component analysis: G1: r = 1; 

G2: r = 0.99; both pspin < .0001). Third, even though data was normally distributed, it yielded relatively 

sparse data points for each inter-regional correlation. We therefore tested whether the use of Spearman’s 

rho instead of Pearson’s r in computing the initial correlation matrix influences gradient organization. 

Gradients based on Spearman’s rho correlation coefficients correlated highly with the original gradients 

(Spearman: G1: r = 0.94; G2; r = 0.84). Fourth, gradients were not impacted by correcting for sample 

sizes of underlying disorder samples as tested by including sample sizes as covariates in the computation 

of the cross-disorder co-alteration matrix via partial correlation (G1: r = 0.99; G2: r = 0.96; both pspin < 

.0001). Last, original gradients also correlated highly with gradients for which cut-off values (i.e. 

sparsity) of the correlation matrix was manipulated (sparsity of 90%: G1: r = 0.97; G2: r = 0.92; sparsity 

of 70%: G1: r = 0.99; G2: r = 0.96; sparsity of 50%: G1: r = 0.94; G2: r = 0.80; all pspin < .05). Overall, 

original gradients were robust against multiple parameter manipulations.  

 

Influence of individual disorders on gradient organization  

 

To assess whether gradient organization was differentially impacted by individual disorders, we 

performed leave-one-disorder-out analyses and correlated resulting gradients with original gradients G1 

and G2 (Supplementary Figure S2B). We observed that gradients were generally robust against 

leaving out single disorders (w/o ADHD: rG1 = 0.95; rG2 = 0.77; w/o BD: rG1 = 0.99; rG2 = 0.86; w/o 

SCZ: rG1 = 0.98; rG2 = 0.94; w/o OCD: rG1 = 0.99; rG2 = 0.83; w/o MDD: rG1 = 0.99; rG2 = 0.97; all pspin 

< .0001). However, this was not the case for ASD (without ASD: rG1 = 0.10; rG2 = 0.01). Leaving out 

ASD in gradient computations appeared to lead to a switch in features to be reflected in principal and 

secondary gradients, as was observed in significant correlations of the principal gradient without ASD 

with the original G2 (r = 0.86, pspin< .001) and of the secondary gradient without ASD with the original 

G2 (r = 0.48, pspin < 0.01). This finding is not surprising, as cortical thickness alterations in ASD show 

a spatial pattern that is highly similar to G1 and thus likely strengthens the weight of features then 

represented in G1. 

 

The third to eighth gradients of transdiagnostic co-alteration in cortical thickness  

 

We additionally studied the third to eighth transdiagnostic gradients which are depicted in 

Supplementary Figure S3. The third gradient traversed from sensory-limbic to lateral temporal cortex, 

while the fourth segregated (para)limbic from lateral prefrontal regions. The fifth gradient had a bilateral 

axis in orbitofrontal and limbic cortex on the one hand, and superior parietal cortex on the other hand. 

The sixth gradient was characterized by hemispheric asymmetry, distinguishing entorhinal and superior 

temporal sulcus from the temporoparietal junction and paracentral lobule in the left hemisphere, but 



Supplementary Material for Study 1 

 

 

73 

lingual gyrus and cuneus from paracentral lobule and pars triangularis in the right hemisphere. Lastly, 

the seventh gradient captured a segregation between sensory-limbic and heteromodal cortices. 

 

G1 captures segregation of functional disease epicenters 

 

As we noticed that frontal and temporal disease epicenters appear to be segregated by G1 (see 

Supplementary Figure S4) suggesting differential impact on co-alteration network organization, we 

performed a follow up analysis to confirm this assumption. In order to evaluate whether whole-brain 

cross-disorder disease impact shows different covariance patterns for frontal and temporal epicenters, 

we i) extracted cross-disorder inter-regional correlations from the 68 x 68 correlation matrix (see Figure 

1C & 2A of the main manuscript) for all frontal and temporal disease epicenters, respectively, and 

computed their degree centrality as the sum of all correlations of each epicenter parcel. ii) We extracted 

cross-disorder whole-brain structural covariance for two representative epicenters, the left pars orbitalis 

and entorhinal cortex, which emerged as the two strongest (functional) epicenters. Both approaches 

revealed that frontal epicenters show covariance of disease impact across wide-spread regions of the 

cortex, whereas temporal epicenters show highest regional correlations within temporal, and no 

correlations with frontal regions (see Supplementary Figure S5). 

 

Distribution of NeuroSynth functional terms along gradient bins 

 

In addition to the 2D space framed by the two transdiagnostic gradients within which cognitive terms 

were situated, see Figure 2F of the main manuscript, we also investigated the position of cognitive 

terms along each gradient separately. Following the same strategy and using the same 24 NeuroSynth 

cognitive terms, we binned each gradient into five-percentile bins. Regions of the same bin formed a 

region of interest (ROI), yielding 20 ROIs for each gradient. These ROIs were then tested for their 

overlap with meta-analytic ROIs associated with each of the 24 cognitive terms via z-statistics. The 

magnitude of an average z-value at a ROI (i.e., a position along the gradient) reflects the strength of its 

association with a certain functional task activation. We sorted the topic terms by their weighted mean 

position along both gradients, revealing systematic shifts in functional networks along transdiagnostic 

axes of co-alteration (Figure S6). While G1 segregated sensory (‘auditory’, ‘multisensory’) from higher 

order cognitive functions (‘Cognitive control’, ‘inhibition’), G2 distinguished sensory (‘auditory’, 

‘multisensory’) from perception/attention related functions (‘visuospatial’, ’attention’). 

 

Disorder-specific epicenters and their overlap with transdiagnostic epicenters 

 

In order to investigate to which degree transdiagnostic epicenters are also observed in each disorder, we 

repeated the epicenter mapping approach using normative HCP connectivity data (rs-fMRI and DTI) in 
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combination with ENIGMA Cohen’s d maps. For each disorder, we systematically correlated each 

parcel’s normative functional or structural connectivity profile with the absolute Cohen’s d map and 

identified parcel’s at pspin < 0.05 as potential disease epicenters. We then computed the overlap between 

disorder-specific and transdiagnostic epicenters in percent (See Supplementary Figure S7). 
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Supplementary Figures 

 

 
Figure S1. Correspondence between Co-alteration hubs, shared illness effects, and epicenters. A) Co-alteration 

hubs. B) Hit map based on average absolute Cohen’s d values, rescaled between 0 and 1 within disorders. Overlaps 

in cortical thickness (CT) reductions (C) and increase (D). In subplots A - D), black and white brain images show 

a thresholded version (top 20%) of the brain image in the same subplot. E) and F) depict disease epicenters 

computed based on the hit map (B) for functional and structural connectivity, respectively. 
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Figure S2. Robustness of co-alteration hubs and transdiagnostic gradients to parameter manipulations. Values 

indicate correlation with original hubs/gradients after parameter manipulation. A) Co-alteration hubs based on co-

alteration matrix with different cut-offs or corrected for sample-size (n-corrected) per disorder. B) Left: Corrected 

for average illness effects and sample size, or Laplacian eigenmap or principal component analysis (PCA) as 

dimensionality reduction techniques, or co-alterations based on spearman’s rho. Middle: Co-alteration matrix cut-

offs. Right: Constructing gradients based on five disorders only, highlighting the contribution of single disorders. 

*G1 and G2 are switched for autism spectrum disorder (ASD). BD = Bipolar disorder, ADHD = Attention-

deficit/hyperactivity disorder, MDD = Major depressive disorder, OCD = Obsessive compulsive disorder, SCZ = 

Schizophrenia spectrum disorder. 
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Figure S3. Overview of all gradients computed from cross-disorder correlation matrix using diffusion 

embedding. 

 

 

 

 
Figure S4. Gradient loadings at epicenters. Principal axis (G1) masked by significant functional epicenters, 

demonstrating that epicenters are strongly placed towards apices of the gradient. Red and blue colors indicate 

opposite apices of G1. 
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Figure S5. G1 captures segregation of functional disease epicenters. A) Depicts degree centrality of frontal (left) 

and temporal (right) functional disease epicenters computed based on whole-brain covariance of cross-disorder 

disease impact for respective frontal and temporal parcels. B) Shows isolated covariance patterns for the two most 

likely disease epicenters representative for frontal and temporal structures. 

 

 

 
Figure S6. Meta-analysis for 24 cognitive terms obtained from NeuroSynth (Yarkoni et al., 2011) along the 

principal (G1) and secondary gradient (G2). We computed parcel-wise z-statistics, capturing node-function 

associations, and calculated the center of gravity of each function along 20 five-percentile bins of G1 (A) and G2 

(B). Function terms are ordered by the weighted mean of their location along the gradients. 
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Figure S7. Overlaps in disorder-specific disease epicenters. In order to examine to which degree transdiagnostic 

epicenters also reflect individual disorder’s epicenters, we quantified the overlap of functional (A) and structural 

(B) epicenters. Epicenter maps for each disorder were binarized, labeling a region as epicenter or no epicenter, 

and then summed, reflecting in how many disorders a region forms an epicenter. Epicenter maps for individual 

disorders are depicted in C). 
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Supplementary Tables 

 
Table S1. Cohen’s d values describing case-control differences in cortical thickness for 6 mental disorders used 

for transdiagnostic analyses. 

ROI ADHD ASD BD MDD OCD SCZ 

L banks sts 0.01 -0.07 -0.21 -0.06 -0.06 -0.35 

L caudal anterior cingulate    -0.11 0.03 -0.10 -0.04 0.00 -0.12 

L caudal middle frontal -0.02 0.06 -0.27 -0.01 -0.09 -0.36 

L cuneus 0.11 -0.06 -0.06 0.05 -0.04 -0.20 

L entorhinal -0.06 -0.24 -0.04 -0.04 -0.06 -0.20 

L fusiform -0.01 -0.19 -0.29 -0.12 -0.11 -0.49 

L inferior parietal 0.08 -0.05 -0.27 -0.06 -0.14 -0.36 

L inferior temporal 0.00 -0.16 -0.25 -0.05 -0.09 -0.45 

L isthmus cingulate 0.04 0.05 -0.13 -0.10 -0.07 -0.31 

L lateral occipital 0.14 -0.02 -0.16 -0.02 -0.07 -0.33 

L lateral orbitofrontal 0.03 0.00 -0.22 -0.05 -0.10 -0.40 

L lingual 0.11 -0.02 -0.21 0.01 -0.05 -0.35 

L medial orbitofrontal -0.08 0.08 -0.20 -0.13 -0.08 -0.23 

L middle temporal 0.02 -0.12 -0.25 -0.09 -0.09 -0.44 

L parahippocampal 0.10 -0.11 -0.02 -0.07 -0.06 -0.28 

L paracentral -0.01 -0.05 -0.14 0.00 -0.01 -0.25 

L pars opercularis -0.01 -0.03 -0.29 -0.06 -0.08 -0.38 

L pars orbitalis -0.01 0.04 -0.25 -0.07 -0.05 -0.32 

L pars triangularis -0.03 0.05 -0.27 -0.05 -0.03 -0.34 

L pericalcarine 0.04 -0.01 0.02 0.09 0.01 -0.08 

L postcentral 0.05 -0.07 -0.10 0.04 -0.02 -0.26 

L posterior cingulate -0.11 0.05 -0.11 -0.10 -0.07 -0.30 

L precentral -0.06 0.09 -0.21 -0.02 -0.02 -0.34 

L precuneus 0.04 -0.08 -0.21 -0.02 -0.10 -0.30 

L rostral anterior cingulate -0.09 0.01 -0.15 -0.13 -0.07 -0.18 

L rostral middle frontal 0.03 0.11 -0.28 -0.04 -0.10 -0.36 

L superior frontal -0.04 0.11 -0.23 -0.07 -0.07 -0.43 

L superior parietal 0.10 -0.09 -0.16 -0.01 -0.06 -0.21 

L superior temporal 0.04 -0.15 -0.21 0.01 -0.01 -0.44 
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L supramarginal 0.02 -0.09 -0.25 -0.05 -0.05 -0.40 

L frontal pole 0.08 0.04 -0.12 -0.01 -0.05 -0.21 

L temporal pole -0.02 -0.14 -0.12 0.01 0.03 -0.25 

L transverse temporal -0.02 -0.24 -0.12 -0.04 0.00 -0.25 

L insula -0.01 -0.09 -0.20 -0.11 -0.07 -0.41 

R bankssts 0.01 -0.07 -0.13 -0.07 0.01 -0.36 

R caudal anterior cingulate -0.11 0.03 -0.06 -0.08 -0.04 -0.15 

R caudal middle frontal -0.02 0.06 -0.21 0.01 -0.08 -0.32 

R cuneus 0.11 -0.06 -0.03 0.05 -0.03 -0.23 

R entorhinal -0.06 -0.24 -0.08 -0.06 0.01 -0.15 

R fusiform -0.01 -0.19 -0.27 -0.12 -0.09 -0.54 

R inferior parietal 0.08 -0.05 -0.26 -0.04 -0.14 -0.35 

R inferior temporal 0.00 -0.16 -0.19 -0.12 -0.06 -0.44 

R isthmus cingulate 0.04 0.05 -0.18 -0.07 -0.05 -0.31 

R lateral occipital 0.14 -0.02 -0.22 0.01 -0.07 -0.34 

R lateral orbitofrontal 0.03 0.00 -0.21 -0.12 -0.11 -0.36 

R lingual 0.11 -0.02 -0.20 -0.01 -0.04 -0.39 

R medial orbitofrontal -0.08 0.08 -0.23 -0.13 -0.10 -0.24 

R middle temporal 0.02 -0.12 -0.22 -0.09 -0.10 -0.38 

R parahippocampal 0.10 -0.11 -0.09 -0.06 -0.08 -0.29 

R paracentral -0.01 -0.05 -0.14 -0.01 0.01 -0.22 

R pars opercularis -0.01 -0.03 -0.25 -0.02 -0.06 -0.42 

R pars orbitalis -0.01 0.04 -0.24 -0.07 -0.07 -0.34 

R pars triangularis -0.03 0.05 -0.23 -0.03 -0.06 -0.37 

R pericalcarine 0.04 -0.01 0.02 0.08 0.03 -0.09 

R postcentral 0.05 -0.07 -0.08 0.03 0.04 -0.28 

R posterior cingulate -0.11 0.05 -0.17 -0.09 -0.06 -0.31 

R precentral -0.06 0.09 -0.18 -0.02 -0.04 -0.32 

R precuneus 0.04 -0.08 -0.19 0.01 -0.10 -0.30 

R rostral anterior cingulate -0.09 0.01 -0.09 -0.10 0.01 -0.12 

R rostral middle frontal 0.03 0.11 -0.26 -0.04 -0.09 -0.31 

R superior frontal -0.04 0.11 -0.26 -0.08 -0.04 -0.40 

R superior parietal 0.10 -0.09 -0.16 0.03 -0.05 -0.22 

R superior temporal 0.04 -0.15 -0.19 -0.03 0.01 -0.44 
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R supramarginal 0.02 -0.09 -0.18 -0.05 0.00 -0.39 

R frontal pole 0.08 0.04 -0.10 -0.06 0.02 -0.21 

R temporal pole -0.02 -0.14 -0.06 0.01 0.02 -0.24 

R transverse temporal -0.02 -0.24 -0.11 -0.05 -0.02 -0.26 

R insula -0.01 -0.09 -0.17 -0.12 -0.07 -0.41 

Cohen’s d values were accessed through the ENIGMA Toolbox (Larivière et al., 2021) and for adult samples 

(except for Autism spectrum disorder (ASD), for which data was only available for a pooled sample including 

younger subjects). Data was collected and analyzed by respective ENIGMA working groups (Attention-

deficit/hyperactivity disorder (ADHD) (Hoogman et al., 2019), Autism spectrum disorder (ASD) (van Rooij et 

al., 2018), Bipolar disorder (BD) (Hibar et al., 2018), Major depressive disorder (MDD) (Schmaal et al., 2017), 

Obsessive compulsive disorder (OCD) (Boedhoe et al., 2018), Schizophrenia (SCZ) (van Erp et al., 2018)) and 

adjusted for different combinations of age, sex, scan site/scanner differences, intracranial volume, and intelligence 

quotient effects (see Supplementary Table S2). ROI = Region of interest. 
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Table S2. Sample Demographics.  

Disorder  sites Weighted mean 

age (cases)  

Weighted mean 

age (controls) 

n Covariates 

Schizophrenia 

spectrum (van Erp et 

al., 2018) 

39 32.3a 

 

34.5a Cases: 4474 

Controls: 5098 

Total: 9572 

age, sex, scan site  

Attention deficit 

hyperactivity disorder 

(Hoogman et al., 2019) 

36 32.97  Cases: 733  

Controls: 539  

Total: 1272 

age, sex, scan 

site* 

Autism spectrum 

disorder (van Rooij et 

al., 2018)  

49 15.4 15.8 Cases: 1571 

Controls: 1651 

Total: 3222 

age, sex, IQ, scan 

site*  

Bipolar disorder 

(Hibar et al., 2018) 

28 38.4a 35.6a Cases: 1837 

Controls: 2582 

Total: 4419 

age, sex, scan 

site*  

Major depressive 

disorder (Schmaal et 

al., 2017) 

20 44.8a 54.6a Cases: 1911 

Controls: 7663 

Total: 9574 

age, sex, scan site 

Obsessive-compulsive 

disorder (Boedhoe et 

al., 2018) 

27 32.1  

 

30.5 Cases: 1498 

Controls: 1436 

Total: 2934 

age, sex, scan site 

Adapted from Radonjic et al. (2021). a = weighted mean computed by Radonjic et al. (2021). * = In this study, 

site was included as a random effect in a mixed-effect model and not as a covariate. IQ = Intelligence quotient.  
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Table S3. 232 Genes for which spatial transcription patterns correlated significantly with the principal 

transdiagnostic gradient (Pspin < .01). 

 

Gene symbol 

r Pspin 

PRRX1 0.8 0.002 

ZIC1 0.74 0.001 

CTXN3 0.71 0.001 

RPH3AL 0.7 0.001 

CD6 0.69 0.004 

LAMA2 0.68 0.003 

HSPB8 0.67 0.001 

KRT31 0.67 0.001 

WNT10A 0.67 0.002 

ACTC1 0.67 0.002 

YBX2 0.66 0 

GORAB 0.65 0.003 

FOXF2 0.65 0.009 

CCDC80 0.64 0 

CD38 0.64 0.005 

TCERG1L 0.64 0.001 

TEX30 0.64 0.003 

NRP1 0.64 0.008 

CREB3L3 0.63 0.002 

SPRY4 0.63 0.001 

CBLN2 0.62 0.004 

PCDH10 0.62 0.001 

FAM213A 0.62 0.003 

SULF1 0.62 0.007 

HDAC9 0.62 0.001 

ARHGAP25 0.61 0.007 

RTP1 0.6 0.004 

AEBP1 0.6 0.002 

TSPAN33 0.6 0.003 

PROCA1 0.6 0.004 

TNFRSF14 0.59 0.004 

RBP1 0.59 0.001 

WFDC1 0.59 0.006 

GALNT16 0.59 0.005 

AZIN2 0.58 0 

MRAP2 0.58 0.006 

DBX2 0.58 0.007 

ERICH1 0.58 0 

OVOL2 0.58 0.003 

ZC2HC1A 0.58 0.006 

SCRG1 0.58 0.001 

ITGA8 0.58 0.005 

KCNN2 0.58 0.001 

NT5DC2 0.58 0.005 

HSPB3 0.57 0.007 

CYP51A1 0.57 0.008 

TMEM117 0.57 0.007 

C6orf62 0.57 0.002 

ATP2C2 0.56 0.002 

CHRNA6 0.56 0.002 

BAIAP2L2 0.55 0.003 

TNC 0.55 0.002 

RAB3C 0.55 0.007 

VIT 0.55 0.005 

NECTIN3 0.55 0.001 

ZIC3 0.55 0.001 

PPEF1 0.55 0.003 

COL11A1 0.55 0.007 

LINC02217 0.55 0.003 

HRH3 0.55 0.007 

GPR26 0.55 0 

MEIS3P1 0.55 0.003 

TMTC3 0.54 0.001 

TGFBI 0.54 0.008 

CCDC110 0.54 0.008 

CMTM4 0.54 0.005 

NANOS3 0.54 0.001 

ASB6 0.53 0.004 

MELTF 0.53 0.001 

ASB2 0.53 0.004 

FLJ30901 0.53 0.006 

TRAF3 0.53 0.008 

PLCH1 0.52 0.009 

CLIC5 0.52 0.005 

ADTRP 0.51 0.008 

CASC10 0.51 0.007 

BNIP3 0.51 0.006 

MGAT4C 0.51 0.009 

STBD1 0.5 0.009 

PCDHB4 0.5 0.006 



Supplementary Material for Study 1 

 

 

85 

CLU 0.5 0.005 

CCNYL1 0.5 0.001 

PCBP3 0.49 0.009 

MPPED1 0.49 0.003 

MPP6 0.49 0.007 

SCYL3 0.49 0.008 

GMPPB 0.49 0.006 

GBAP1 0.49 0.008 

SC5D 0.49 0.004 

GULP1 0.49 0 

SMPD1 0.49 0.007 

GRM3 0.49 0.007 

NMNAT3 0.49 0.005 

PNPLA3 0.48 0.008 

CAMK1G 0.48 0.006 

GOLPH3L 0.48 0.001 

ZNF704 0.48 0.007 

GKAP1 0.48 0.006 

TUBA4A 0.47 0.008 

SORCS2 0.47 0.003 

TFRC 0.47 0.008 

DUSP6 0.47 0.008 

CNIH3 0.47 0.003 

LRRC4C 0.47 0.008 

FREM3 0.47 0.009 

ATP7A 0.47 0.009 

RNF182 0.47 0.007 

ITGB5 0.46 0.007 

C2orf40 0.46 0.001 

CCDC102B 0.46 0.007 

DACT3 0.46 0.005 

HACD1 0.46 0.009 

COL23A1 0.46 0.006 

PART1 0.45 0.009 

DCUN1D3 0.45 0.004 

SNORC 0.45 0.004 

NXPH2 0.45 0.009 

OSTN 0.44 0.006 

ADCYAP1 0.44 0.004 

DUSP3 0.44 0.006 

RTP4 0.42 0.009 

SLC6A13 0.42 0.005 

PTPA 0.42 0.007 

TAPT1 0.42 0.009 

TUBA1B 0.42 0.003 

TCIM 0.41 0.005 

HCN3 0.41 0.009 

PIK3CD 0.41 0.009 

CNTNAP2 0.4 0.008 

FAM234B 0.4 0.003 

RRP8 0.4 0.008 

OSCAR 0.4 0.009 

KAT5 0.4 0.006 

LOC108783654 0.4 0.009 

SLC25A42 0.4 0.009 

HDAC5 0.39 0.006 

TRMT61A 0.38 0.006 

NRSN1 0.37 0.004 

GPR22 0.37 0.008 

LRRC32 0.37 0.003 

TRABD2A 0.37 0.009 

PLK3 0.37 0.008 

PRKX 0.36 0.009 

KLF11 0.35 0.007 

GNLY 0.35 0.009 

TMEM232 0.34 0.007 

PEX16 -0.29 0.006 

FAM163B -0.3 0.008 

ZFYVE27 -0.31 0.009 

IGFBPL1 -0.33 0.009 

ALPK1 -0.34 0.005 

LINC00167 -0.34 0.004 

ANAPC13 -0.35 0.004 

DUSP11 -0.36 0.008 

VAMP5 -0.37 0.009 

ZBTB49 -0.37 0.003 

TBC1D17 -0.38 0.005 

FAM118B -0.38 0.005 

MPPE1 -0.38 0.009 

BCL2L11 -0.39 0.008 

MAML3 -0.4 0.002 

NELFA -0.4 0.009 

EXOSC2 -0.4 0.005 

ZNF766 -0.4 0.009 

ZNF594 -0.41 0.006 

SRSF11 -0.41 0.009 
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PKP2 -0.41 0.009 

SRSF4 -0.41 0.004 

AP1G2 -0.41 0.007 

CCDC59 -0.42 0.008 

ZNF781 -0.42 0.008 

DDI2 -0.43 0.008 

CXorf56 -0.44 0.007 

HAUS4 -0.44 0.004 

OLFML2A -0.44 0.009 

GPR83 -0.45 0.001 

EPCAM -0.45 0.007 

SPEF1 -0.45 0.005 

RNASEH1 -0.45 0.005 

LDB1 -0.46 0.007 

AGAP11 -0.46 0.005 

LOC100130950 -0.46 0.009 

TMEM19 -0.47 0.001 

LOC100131289 -0.47 0.008 

MRPL50 -0.47 0.003 

MINPP1 -0.47 0.003 

GPHN -0.48 0.006 

CRABP2 -0.48 0.003 

LONRF3 -0.48 0.007 

ALKBH5 -0.48 0.007 

ACKR1 -0.49 0.006 

STRIP2 -0.49 0.002 

ITFG2 -0.49 0.007 

WNT2B -0.49 0.002 

FBXO3 -0.49 0.007 

ZFP37 -0.5 0.002 

FGD1 -0.5 0.003 

HEATR3 -0.5 0.007 

GPR19 -0.5 0.007 

TAP2 -0.5 0.003 

HSD17B11 -0.5 0.008 

BTBD3 -0.51 0.001 

KRTCAP3 -0.51 0.006 

PAM -0.52 0.008 

VCX -0.52 0.007 

ANKRD20A11P -0.52 0.005 

PATJ -0.53 0.001 

MTHFD2L -0.54 0.007 

FBXO11 -0.54 0.009 

PLOD2 -0.54 0.005 

RIPK1 -0.54 0.009 

DPP6 -0.54 0.008 

WNT3 -0.55 0.008 

GREB1L -0.55 0.005 

SDHAF4 -0.56 0.008 

MST1R -0.56 0.008 

PDGFD -0.56 0.005 

TENM4 -0.57 0.006 

THSD7A -0.57 0.007 

SLFN11 -0.58 0.005 

LAMP5 -0.58 0.002 

ZNF662 -0.58 0.002 

TPTE2P1 -0.59 0.005 

CDH12 -0.61 0.007 

DSP -0.62 0.004 

SLC17A6 -0.66 0.006 

CPLX2 -0.67 0.001 

ANKRD20A5P -0.69 0.002 

C15orf59 -0.69 0.003 

COL27A1 -0.71 0.002 

WDR97 -0.71 0.003 

LXN -0.73 0 
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Table S4. Link between principal (G1) and secondary (G2) transdiagnostic axes of pathological covariance and 

disease-specific Cohen’s d maps.  
 ADHD ASD BD MDD SCZ OCD 

G1 r = -0.52, 

pspin  = 0.002 

r = 0.82, 

pspin  = 0.001 

n.s. n.s. n.s. r = -0.20, 

pspin  = 0.021 

G2 r = -0.58, 

pspin  < .0001 

r =  -0.26, 

pspin  = 0.050 

r = 0.42, 

pspin  = 0.001 

n.s. r = 0.24, 

pspin  = 0.041 

r = 0.6,  

pspin  = 0.001 
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Supplementary Results 
 
Distribution of distress scores and resilient psychosocial functioning with respect to demographics 

 

Having derived distress scores (see Supplementary Table S1 for loadings) and resilient psychosocial 

functioning (ResPSF) scores and their intra-individual rates of change (∆), we tested whether scores 

differed between self-reported sexes or as an effect of age (see Supplementary Table S2 for statistics). 

In the larger sample of 712 individuals, we observed significantly higher ResPSF and lower distress levels 

in males than in females. This sex difference was not significant in the smaller sample (n = 141) included 

in the imaging analyses. Neither ResPSF nor distress scores were significantly associated with age. Intra-

individual change in ResPSF and distress showed no sex or age effects in neither sub-sample. As change 

in ResPSF was the main behavioral variable of interest in the current study and did not show a significant 

sex difference, we did not perform further sex-stratified analyses. 

 

Table S1. Factor loadings of questionnaires included for the computation of a general distress factor. 
 

Item Loading 
ypq 84 no good at all 0.803 
ypq 89 useless 0.783 
ypq 92 failure 0.782 
ypq 51 others happier 0.769 
ypq 23 hated myself 0.769 
ypq 08 no good any more 0.767 
ypq 45 alone with people 0.755 
ypq 30 never as good 0.739 
ypq 31 everything wrong 0.725 
ypq 38 worried lots 0.725 
ypq 50 worried happen 0.725 
ypq 59 worried 0.724 
ypq 88 not proud 0.716 
ypq 39 afraid lots 0.712 
ypq 36 others do easily 0.708 
ypq 27 lonely 0.705 
ypq 15 no good future 0.702 
ypq 16 not worth living 0.691 
ypq 28 nobody loved me 0.689 
ypq 44 what others think 0.681 
ypq 22 bad things happen 0.68 
ypq 61 worried bad 0.675 
ypq 35 things went wrong 0.674 
ypq 21 hard to think 0.67 
ypq 25 looked ugly 0.654 

ypq 53 hurt fussed 0.649 
ypq 42 others dislike way 0.647 
ypq 24 bad person 0.644 
ypq 66 bad nothing wrong 0.643 
ypq 72 unsure right things 0.642 
ypq 60 against me 0.639 
ypq 09 blame myself 0.637 
ypq 54 did things wrong 0.636 
ypq 56 worried night 0.635 
ypq 20 not see friends 0.622 
ypq 01 miserable 0.613 
ypq 17 dying 0.608 
ypq 02 not enjoy 0.595 
ypq 18 family better off 0.584 
ypq 19 kill myself 0.581 
ypq 29 no fun 0.576 
ypq 49 tired a lot 0.575 
ypq 40 angry easily 0.571 
ypq 91 more respect 0.565 
ypq 12 talk less 0.563 
ypq 11 grumpy 0.558 
ypq 46 often sick 0.557 
ypq 41 worry parents say 0.549 
ypq 34 trouble making mind 0.545 
ypq 69 something wrong 0.541 
ypq 14 cried 0.524 
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ypq 43 hard to sleep 0.517 
ypq 32 sleep badly 0.504 
ypq 52 bad dreams 0.486 
ypq 55 wake scared 0.48 
ypq 05 tired 0.479 
spq 09 talked about 0.467 
ypq 63 over and over 0.455 
ypq 06 moving slowly 0.451 
ypq 58 wiggled seat 0.436 
ypq 07 restless 0.435 
ypq 62 certain things 0.433 
spq 60 others watching 0.42 
spq 63 people talk 0.413 
ypq 13 talk slowly 0.412 
ypq 67 clean enough 0.397 
ypq 26 aches pains 0.396 
ypq 37 getting breath 0.392 
spq 64 hear thoughts 0.374 
spq 61 distract sounds 0.349 
ypq 64 hated dirt 0.318 
ypq 73 broke rules 0.315 
spq 04 mistake objects 0.304 
ypq 78 cheated 0.303 
spq 13 force around you 0.291 
ypq 68 special way 0.285 
ypq 70 hands clean 0.281 
ypq 71 special words 0.28 
spq 31 thoughts aloud 0.264 

ypq 65 special number 0.255 
spq 40 saw invisible 0.245 
ypq 77 skived 0.244 
spq 28 special sign 0.231 
ypq 79 ran away 0.231 
ypq 76 hurt someone 0.218 
ypq 74 stole 0.21 
ypq 75 damage property 0.163 
ypq 83 hurt animal 0.133 
wemwbs 05 energy -0.418 
wemwbs 13 interested -0.454 
wemwbs 09 feel close -0.507 
wemwbs 11 make mind -0.549 
wemwbs 12 loved -0.553 
wemwbs 01 optimistic -0.559 
ypq 90 as good -0.574 
ypq 86 good qualities -0.575 
wemwbs 02 useful -0.581 
wemwbs 03 relaxed -0.582 
wemwbs 06 problems -0.598 
ypq 87 do things well -0.608 
ypq 85 satisfied -0.61 
ypq 93 positive -0.64 
wemwbs 07 think clear -0.645 
wemwbs 10 confident -0.669 
wemwbs 14 cheerful -0.702 
wemwbs 08 feel good -0.713  

__________________________________________________________________________________________ 

Ypg = Young person’s questionnaire (containing: Moods and Feelings Questionnaire, Revised Children’s Manifest 
Anxiety Scales, Leyton Obsessional Inventory, The Behaviours Checklist, Rosenberg Self-Esteem Scale); spq = 
Schizotypal Personality Questionnaire; wemwbs = Warwick-Edinburgh Mental Wellbeing Scale. 
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Table S2. Distribution of distress and resilient psychosocial functioning (ResPSF) scores with respect to sex (mean 

+/- SD) and age in the prediction sample (i.e., 712 individuals included for the computation of ResPSF; 455 with 

repeated measures) and the imaging sample (i.e., 141 individuals for which both imaging and behavioral data was 

available for two time points). 

 Prediction sample (n = 712) Imaging sub-sample (n = 141) 

Mean ResPSF Male: 2.46 ± 16.93 

Female: -2.74 ± 19.36 

t(710) = -3.81, p = 0.0001, [-7.89, -2.52] 

 

Correlation with age: r = 0.04, p = 0.22 

Male: 3.59 ± 17.08 

Female: 0.83 ± 16.16 

t(139) = -0.99, p = 0.32, CI = [-8.3 2.77] 

 

Correlation with age: r = 0.08, p = 0.32 

 

∆ResPSF Male: 0.60 ± 15.84 

Female: 1.97 ± 10.84 

t(453) = 0.81, p = 0.42, CI = [-1.98, 4.73] 

 

Correlation with age: r = -0.06, p = 0.20 

Male: 2.62 ± 15.83 

Female: 2.18 ± 16.96 

t(139) = -0.16, p = 0.88, CI = [-5.9, 5,02] 

 

Correlation with age: r = -0.01, p = 0.9 

 

Mean 

distress 

Male: -6.39 ± 20.07 

Female: -1.43 ± 21.43 

t(710) = 3.15, p = 0.002, CI = [1.85, 7.97] 

 

Correlation with age: r = 0.08, p = 0.04 

Male: -8.70 ± 20.70 

Female: -5.91 ± 18.14 

t(139) = 0.85, p = 0.39, CI = [-3.67, 9.27] 

 

Correlation with age: r = 0.01, p = 0.86 

 

∆distress Male:-3.15 ± 16.03 

Female: -5.12 ± 20.44 

t(453) = -0.90, p = 0.37, CI = [-5.01, 1.87] 

 

Correlation with age: r = 0.03, p = 0.57 

Male: -0.91 ± 16.77 

Female: 2.15 ± 17.64 

t(139) = 1.06, p = 0.29, CI = [-2.67, 8.80] 

 

Correlation with age: r = 0.05, p = 0.22 

ResPSF = Resilient psychosocial functioning scores. Bold = significant at p<0.05. 
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Potential links between changes in ResPSF and changes in adversity exposure 

 

Given that ResPSF were computed separately for each time point by predicting distress levels based on 

adversity levels measured at each time point, our approach inherently adjusts for changes in adversity 

exposure between measurement time points. We still wanted to confirm that changes in ResPSF were not 

simply a correlate of increasing or decreasing adversity levels. Correlating ∆ResPSF with ∆s of individual 

risk assessment scores revealed no significant associations between ∆ResPSF and ∆-scores from the 

MOPS (r = 0.10), APQ (r = 0.10), LEQ (r = -0.02; all p> 0.05), or SES (remained unchanged for most 

individuals; Supplementary Figure S1). Changes in adversity exposure were further not associated with 

changes in myelin-sensitive MT (all p> 0.05). 

  
Supplementary Figure S1. Changes in adversity exposure between measurement timepoints. The upper row 

depicts intra-individual changes in adversity measures (n = 141 individuals). The lower row depicts respective 

Pearson’s correlations between changes in adversity measures and changes in resilient psychosocial functioning 

(∆ResPSF; n=141). No significant association with ∆ResPSF was observed for change in adversity exposure as 

captured by the Measure of Parenting Style (MOPS; r = 0.10, p = 0.24), the Alabama parenting questionnaire 

(APQ; r = 0.10, p = 0.21), or the Life events questionnaire (LEQ; r = -0.02, p = 0.79). IMD = Index of mean 

deprivation. 
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Representativeness of the MRI subsample 

 

To address concerns that developmental neuroimaging studies may not be representative of the general 

developmental population (Garcini et al., 2022), we descriptively compared the distributions of levels 

of environmental risk exposures as well as behavioral outcome measures in n = 144 individuals included 

in neuroimaging analyses (the imaging subsample) and the larger sample of individuals included in 

behavioral analyses only (the non-imaging subsample; Supplementary Figure S2). We generally 

observed strongly overlapping distributions for distress and resilient psychosocial functioning (ResPSF) 

scores, as well as for APQ, MOPS, LEQ and CTQ questionnaires, between the two sub-samples. For 

SES, considered here as an index of mean deprivation (IMD), we observed a comparable range but a 

relatively higher proportion of higher SES in the imaging sub-sample (i.e., a more left-skewed 

distribution). This suggests a potential oversampling of individuals from higher socioeconomic 

backgrounds for the neuroimaging analysis. At the same time, it should be noted that the behavioral 

outcome measure (ResPSF) was computed in the full sample, including more individuals with lower SES, 

and also that SES was weighted with the lowest feature importance by the model used to predict ResPSF 

(Figure 1A).  

We also note that the NSPN sample is a locally collected sample from London and 

Cambridgeshire in the UK. 75% of the total sample and 84% of the imaging sub-sample were white. 

Moreover, the sample is predominantly healthy, thereby excluding individuals with, for example, 

neurodevelopmental disorders who are part of the general population. It will be important to test the 

replicability of the current results in more socio-economically and ethnically representative samples of 

the general population. The efficacy of potential resilience factors implied by the current study in a 

largely white, relatively affluent and healthy sample requires further validation in ethnically, socio-

economically and clinically defined groups that are underrepresented in this sample. 
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Supplementary Figure S2. Representativeness of the MRI subsample. The MRI subsample comprises the 

n = 141 individuals included in the main analyses linking changes in resilient psychosocial functioning (ResPSF) 

scores to myeloarchitectonic and functional maturation. The Non-MRI sample comprises all other individuals that 

were included in behavioral analyses only and for whom respective behavioral data were available: In A), the non-

MRI sub-sample includes n = 314 individuals with longitudinal ∆ResPSF scores and n=885 individuals with 

distress scores. In B), the non-MRI sub-sample comprises n = 1457 individuals with all risk exposure assessments 

completed. Distributions show density plots. APQ = Alabama Parenting Questionnaire; MOPS = Measure of 

Parenting Style; LEQ = Life Events Questionnaire; IMD = Index of Mean Deprivation.  
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Sensitivity tests for ∆ResPSF * ∆MT effects 

 

We tested whether the observed association between ∆ResPSF and ∆MT was robust to analytical choices 

by spatially correlating (Pearson’s r) the original unthresholded t-map with t-maps derived from 

alternative analytical approaches (Supplementary Figure S3A). We observed virtually unchanged results 

when 1) not including mean ResPSF as a covariate in the general model (r = 1 with the original map), 2) 

including a quadratic age term to control for non-linear age effects (r = 0.998 with the original map), 

and 3) not winsorizing the input data (correlation of r = 0.987 with the original map). Next, we tested 

whether the observed prefrontal effect was present in different sub-samples. For this purpose, we drew 

1000 sub-samples each containing 80% of the individuals and repeated the analysis 1000 times. The 

average correlation between the original t-map and the t-maps derived from the sub-samples was 

r = 0.929 (Supplementary Figure S3B).  

 

 
Supplementary Figure S3. Sensitivity tests for ∆ResPSF * ∆MT effects. A) Pearson’s correlation between original 

the t-map (x-axis) presented in the main manuscript and t-maps derived from alternative analytical approaches 

(n = 141 individuals, all p < 0.001). B) Histogram depicting Pearson’s correlations between the original t-map and 

t-maps computed based on 1000 randomly drawn sub-samples (80% of data).   
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Organizational axis of developmental change in MT 

 
To assess whether ∆MT occurred in a synchronized manner across the cortex, we further observed that 

inter-regional covariance of ∆MT was organized along an anterior to posterior pattern (Figure S4). We 

then examined whether the topological distribution of ∆ ResPSF effects on ∆MT aligns with general 

organizational principles of intra-individual MT development and observed a positive correlation 

between the t-map and the previously identified principal axis of ∆MT (r = 0.46, pspin = 0.016, CI = [0.36, 

0.53]). Significance was assessed by a spin test (10000 permutations) correcting for spatial auto-

correlations between cortical maps (Alexander-Bloch et al., 2018). Thus, the association between change 

in resilient psychosocial functioning and MT maturation follows general organizational principles of 

MT development. This suggests that differences in the cortex-wide embedding of developmental change 

in anterior vs. posterior regions are reflected in the degree to which both apexes play a role in the 

development of resilient psychosocial functioning. The observed axis likely reflects differences in the 

timeline on which regions are most developmentally active with respect to myelination, and thus have 

differential relevance for adolescent resilience. 

 

 
Supplementary Figure S4. Principal axis of synchronized MT change. A) Structural covariance of intra-

individual deltas of Magnetic Transfer (∆MT) was organized along an anterior-posterior cortical axis (n = 141 

individuals). B) The unthresholded effect map reflecting the association between change in resilient psychosocial 

functioning (∆ResPSF) and ∆MT presented in the main manuscript was spatially correlated with the principal axis 

of MT development, as tested via a Pearson’s correlation and significant after spin tests using 1000 rotations to 

control for spatial auto-correlation (pspin = 0.016). 

 
  



Supplementary Material for Study 2 

 99 

Cross-sectional effects of ResPSF and ∆ ResPSF 

 

We observed no cross-sectional association between baseline MT and baseline ResPSF. However, we 

observed a negative effect of ∆ ResPSF on baseline MT in a parcel in the left middle frontal gyrus 

(L_p10p; t = -4.16, p10,000 permutations + FDR < 0.05). Thus, individuals who had lower ResPSF at baseline 

compared to the follow-up time point also had cross-sectionally lower levels of MT in this region 

(Figure S5). 

 
 
 

 
 

Supplementary Figure S5. Effects of change in resilient psychosocial functioning scores on baseline Magnetic 

Transfer (MT). P-values were corrected by 10.000 non-parametric permutations and FDR (p < 0.05; n = 141 

individuals). 
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PFC sub-clusters in ∆FC analyses 
 
Using functional connectivity data, we investigated whether regions that show differences in ∆MT as a 

function of ∆ResPSF also exhibit different functional embedding. For this analysis, presented in the main 

manuscript, connectivity profiles were averaged across parcels that are part of the prefrontal ROI within 

each participant. As the mask/ROI includes large parts of the PFC and thus a nexus of different 

functional profiles, we further subdivided the cluster based on parcels’ assignment to functional 

communities (Yeo et al., 2011). The ROI spanned sub-regions of frontoparietal, default mode, and limbic 

networks. Because large parts of the limbic network were excluded in FC analyses in this study due to 

low signal-to-noise ratios (see Methods), we tested associations between ∆ResPSF and ∆FC only for 

frontoparietal and default mode sub-regions.  

 The prefrontal cluster showed predominantly negative change in FC across large parts of the 

frontal, temporal, and occipital cortex, as well as the insula and anterior cingulate cortex 

(Supplementary Figure S6A). Studying the association between ∆ResPSF and ∆FC in sub-parts of the 

prefrontal cluster, it appeared that positive associations were largely driven by sub-regions that are part 

of the default mode network. That is, when defining sub-regions that are part of the frontoparietal 

network as seed, two regions (right medial PFC and PCC; Supplementary Figure S6B) showed 

significant effects after 10.000 permutations and FDR (alpha = 0.05). In contrast, defining sub-regions 

that are part of the default mode network as seed revealed positive associations between ∆ResPSF and 

∆FC in 21 regions, spanning medial and lateral PFC, posterior cingulate cortex, and parts of unimodal 

sensorimotor cortices (Supplementary Figure S6C). 

 

Supplementary Figure S6. Effects of change in resilient psychosocial functioning (∆ResPSF) scores on change 

in functional connectivity (FC) of sub-parts of the prefrontal region-of interest presented in the main analysis 

(n=141 individuals). A) Group-average pattern of change in FC (∆FC) for the total prefrontal region of interest 

(ROI). B) We observed no significant association between ∆ResPSF and ∆FC in the ROI sub-regions that are part 

of the frontoparietal network (FPN). C) Associations between ∆ResPSF and ∆FC in ROI sub-regions that are part 

of the default mode network (DMN). B and C include age, sex, site, and mean ResPSF as covariates. The respective 

ROIs are masked in black. Regions excluded due to low signal-to-noise ratio are masked in dark grey. 
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Robustness, estimated maturational processes, and future utility of the MPC maturational index 

 

The maturational index based on microstructural profile similarity (MIMPC ) is a structural extension of 

the previously established functional connectivity maturational index, capturing conservative (i.e. 

strengthening of existing connections) and disruptive maturational modes (i.e., a reorganization of 

existing connectivity patterns (Váša et al., 2020)). While the functional maturational index identifies 

increasing levels of reorganization from unimodal (little reorganization) to transmodal cortex (more 

reorganization), the microstructural maturational index mirrors insights gained from a previously 

established cortical topology of synchronized age effects on microstructural profile covariance (Paquola 

et al., 2019). In the MIMPC, we observe the strongest re-organization in frontoparietal heteromodal cortex, 

whereas a “frame” of ventral/paralimbic and dorsal/somatosensory cortex shows mostly an age-related 

strengthening of existing MPC patterns (i.e., little re-organization). This is consistent with what Paquola 

& Bethlehem et al. reported: association cortical areas, in which overall intra-cortical myelin content 

increases, develop towards a more “sensory” architecture, whereas regions in which preferably mid-to-

deeper layers show increases in myelin develop towards a more “paralimbic” architecture. This 

differentiation process is reflected in the ‘disruptive re-organization’ captured by the MIMPC, and mirrors 

the modular segregation observed in tractography-based adolescent data (Baum et al., 2017). At the 

same time, paralimbic-temporal/ventral and somatosensory/dorsal regions show ‘conservative 

development’ (i.e., little re-organization) in the MIMPC, suggesting that MPC patterns are well-defined 

prior to adolescence (Grydeland et al., 2019; Paquola et al., 2019). Overall, the MIMPC pattern 

meaningfully captures synchronized microstructural maturation and re-organization, consistent with 

previous observations. 

To probe the robustness of the MI derived from microstructural data, we repeated the 

computation of the MIMPC based on different subsamples. First, we drew 100 sub-samples, each 

containing 80% of the individuals per NSPN age bin and repeated the analysis 100 times. The average 

correlation between the MIMPC map based on all individuals for whom MT data was available (n = 295 

subjects, 512 sessions/datapoints) and MIMPC maps derived from 80%-sub-samples was r = 0.96 

(Supplementary Figure S7A). Next, we assessed whether the MIMPC map can be observed with smaller 

sample sizes. To this end, we again drew sub-samples per age bin, but this time the size of the subsamples 

ranged between 20% and 100% (in steps of 5%) of individuals (see Supplementary Figure S7B). Last, 

results stayed consistent when computing the MIMPC – which reflects the correlation between baseline 

and age-related change patterns – based on Spearman’s or Pearson’s correlation (r = 0.99; pspin < .0001) 

Supplementary Figure S7C). 

The maturational index based on microstructural profile covariance adds to our understanding 

of inter-regionally synchronized cortical maturation, capturing adolescent re-organization (integration 

and segregation) of primarily frontoparietal association cortex. That is, emerging work highlights 

integrated multi-scale approaches to elucidate biological risk factors associated with neuropsychiatric 
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conditions. It is increasingly recognized that pathological functional perturbations are coupled with 

microstructural perturbations (Lariviere et al., 2019; B.-Y. Park et al., 2021; Yang et al., 2016; Zheng et 

al., 2019). Moreover, taking a nuanced approach to studying intracortical myeloarchitectural profiles, 

beyond mean myelin content, has revealed parallel maturational processes at different scales and 

topologies (Paquola et al., 2019; Whitaker et al., 2016; Ziegler et al., 2019). The use of the MIMPC in 

future studies may mirror the current use of similar, already established measures such as the main axis 

of MPC age effects and the maturational index for functional connectivity. That is, the main axis of MPC 

age effects has already been linked to the cortical topology from microstructural profiles and histology 

(Paquola et al., 2019), which in tun has been combined with other measures of ‘cortical wiring’ in 

adolescence (B. Park et al., 2022). Assessing the topology of synchronized structural maturation based 

on intra-cortical profiles further extends classical structural covariance approaches, assessing e.g. 

cortical thickness covariance (Raznahan et al., 2011), towards a more nuanced myeloarchitecture. Last, 

similar to our study, the previously established maturational index of functional connectivity (Váša et 

al., 2020) has been demonstrated to robustly capture sex differences in adolescent functional network 

maturation (Dorfschmidt et al., 2022). In summary, the MIMPC may be of interest for future studies of 

adolescent cortical maturation. 

 

 
Supplementary Figure S7. Robustness of the MPC maturational index. A) Histogram depicting correlations 

between the microstructural profile covariance maturational index (MIMPC) derived from all n = 295 individuals 

(512 sessions) and the MIMPC based on 100 sub-samples (80% of data).  B) Correlations between the MIMPC derived 

from all 295 individuals (512 sessions) and the MIMPC based on subsamples of different sizes, ranging from 25-

100% in steps of 5%. C) The MI is computed as the correlation between baseline and change patterns. Here, we 

applied both Spearman’s and Pearson’s correlation to compute the MI and correlated the MI pattern resulting from 

either method via a Pearson’s correlation (r = 0.99, pspin <.0001).  
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Conservative vs. disruptive trends MIMPC Group differences 

 

We tested for differences in the maturational index (MI) between groups of individuals who showed 

increasingly resilient vs. susceptible outcomes. Table S3 summarizes all 43 parcels displaying 

significant group differences in MIMPC (as determined both via z-tests and non-parametric permutation 

testing). Trends were determined with respect to the full sample MIMPC presented in Figure 2. For 

example, a positive ∆MIMPC in a region labeled ‘conservative’ in the full sample MIMPC is interpreted as 

‘+∆ResPSF more conservative’, whereas a positive ∆MIMPC in a region labeled ‘disruptive’ in the full 

sample is interpreted as ‘+ResPSF less disruptive’. Regions that show a significant group difference but 

neither a clear conservative nor disruptive pattern in the full sample are labeled as ‘tipping points’. 
 

Table S3. ROIs with significant group differences in MIMPC and their trends. Group differences were derived from 

z-tests and adjusted for multiple comparisons by thresholding at pFDR <0.05 as well as non-parametric 

permutation testing using 10.000 permutations. Tests were two-sided. 

ROI ∆MIMPC z Trend 

L_RSC -0.507 -7.09 tipping points 

L_31pv -0.565 -9.51 +∆ResPSF more disruptive 

L_7AL -0.28 -3.79 +∆ResPSF less conservative 

L_7PL -0.619 -8.63 tipping points 

L_9p -0.37 -5 tipping points 

L_10d -0.564 -8.41 +∆ResPSF more disruptive 

L_IFSa -0.579 -13 +∆ResPSF more disruptive 

L_PoI2 -0.262 -3.52 +∆ResPSF less conservative 

L_TE2a -0.352 -4.82 +∆ResPSF less conservative 

L_TF -0.388 -5.49 +∆ResPSF less conservative 

L_IP1 -0.694 -9.92 +∆ResPSF less conservative 

L_PGi -0.938 -15.1 +∆ResPSF more disruptive 

L_V6A -1.044 -16.8 +∆ResPSF less conservative 

L_s32 -0.617 -8.53 +∆ResPSF less conservative 

L_Ig -0.54 -12.1 +∆ResPSF more disruptive 

L_p10p 0.525 9.98 +∆ResPSF less disruptive 

R_RSC -0.468 -6.38 +∆ResPSF less conservative 

R_FFC -0.553 -8.01 +∆ResPSF less conservative 

R_SFL -0.225 -3.02 +∆ResPSF less conservative 

R_PCV -0.426 -7.07 +∆ResPSF more disruptive 

R_7Pm -0.694 -13.1 tipping points 

R_v23ab -1.021 -15.1 tipping points 

R_24dv 1.003 17.3 +∆ResPSF less disruptive 

R_7Am -0.802 -11.3 +∆ResPSF less conservative 
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R_7PL -0.713 -10.2 +∆ResPSF less conservative 

R_p32 -0.543 -7.52 +∆ResPSF less conservative 

R_10r -0.935 -13.6 +∆ResPSF less conservative 

R_47m -0.549 -8.42 +∆ResPSF more disruptive 

R_OFC -0.618 -8.67 +∆ResPSF less conservative 

R_6a 0.625 16.1 +∆ResPSF less disruptive 

R_PFcm -0.846 -13.7 tipping points 

R_FOP4 -0.707 -9.88 +∆ResPSF less conservative 

R_A5 -0.621 -9.15 +∆ResPSF less conservative 

R_STSda -0.839 -12 +∆ResPSF less conservative 

R_TE1a -0.667 -9.27 +∆ResPSF less conservative 

R_TE2a -0.552 -7.72 +∆ResPSF less conservative 

R_TPOJ1 -0.76 -11 +∆ResPSF more disruptive 

R_V6A -1.098 -18.5 tipping points 

R_VMV1 -0.97 -15.7 +∆ResPSF less conservative 

R_pOFC -0.186 -2.65 +∆ResPSF less conservative 

R_FOP5 -0.483 -6.59 +∆ResPSF less conservative 

R_LBelt -0.312 -4.35 +∆ResPSF less conservative 

R_TE1m -0.404 -5.5 +∆ResPSF less conservative 

+∆ ResPSF = Increasingly resilient psychosocial functioning with age. ROI labels refer to the HCP parcellation 

(Glasser et al., 2016) 
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Testing group differences in MIMPC via alternative modeling approaches 

 

To test the robustness of the observed group differences in MIMPC to an alternative modeling approach, 

we also combined the groups in a joint interaction model (see Supplementary Methods). We observed a 

high correlation between group-difference maps derived from the original, group-stratified analysis 

compared to the alternative analysis based on a fixed term for the group-by-age interaction (r = 0.97; 

Supplementary Figure S8A). Thus, we concluded that the results were independent from the modeling 

approach, however, we consider the group-stratified approach more intuitive. Furthermore, the results 

remained consistent when computing the MIMPC – which reflects the correlation between baseline and 

age-related change patterns – based on Spearman’s or Pearson’s correlation (r = 0.99; Supplementary 

Figure S8B). Next, we tested whether the observed topology of group differences in MIMPC stay 

consistent in sub-samples. To this end, we drew 1000 sub-samples each containing 80% of the 

individuals and repeated the analysis 1000 times. The average correlation between the group difference 

map based on 141 individuals and the group difference maps derived from sub-samples was r = 0.85 

(Supplementary Figure S8C).  

 

 
Supplementary Figure S8. Group differences in the maturational index (MIMPC) based on alternative modeling 

approaches. A) Pearson’s correlation between group differences in MIMPC modeled in separate models compared 

to a joint interaction model (n = 141 individuals; pspin < .0001). B) The MI is computed as the correlation between 

baseline and change patterns. Here, we applied both Spearman’s and Pearson’s correlation to compute the MI per 

group and correlated the group difference pattern resulting from either method using a Pearson’s correlation (pspin 

< .0001) C) Histogram depicting Pearson’s correlations between the group difference map based on all 141 

individuals and group difference maps computed based on 1000 randomly drawn sub-samples (80% of data).   
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FC Maturational index in increasingly resilient vs. increasingly susceptible psychosocial functioning 

 

We observed a decoupling of microstructural and functional connectivity MIs in large parts of the 

heteromodal cortex (see Figure 3G). For completeness, we therefore also tested for group differences 

in MIFC between individuals who developed towards more resilient vs. more susceptible outcomes as 

well, following the same analytical steps as described for MIMPC. We observed significant but more 

subtle group differences in 8 limited, primarily prefrontal regions (Supplementary Figure S9A). The 

results were robust to alternative modeling approaches (Supplementary Figure S9B-D). 

 

 
Supplementary Figure S9. Regionally less disruptive development of functional connectivity networks with 

increasingly resilient psychosocial functioning. A) Group differences in the functional connectivity Maturational 

Index (MIFC; n = 141 individuals). In this visualization, the MIFC of the group of individuals becoming more 

susceptible with age was subtracted from the MIFC of the group of individuals becoming more resilient with age 

(↑ ∆ResPSF), and thresholded at p<0.05 (FDR & 10,000 permutations). The smaller brain plot on top depicts the 

unthresholded group difference map. Parcels masked in dark grey were excluded due to low signal-to-noise ratios. 

B-D) depict sensitivity checks using alternative modeling approaches and sub-sampling. B) Pearson’s correlation 

between group differences in MIFC modeled in separate models (stratified approach) compared to a joint interaction 

model (r = 0.98, p<0.0001. C) The MI is computed as the correlation between baseline and change patterns. Here, 

we applied both Spearman’s and Pearson’s correlation to compute the MIFC per group and correlated the resulting 

group difference patterns (r = 0.96, p<0.0001). D) Histogram depicting correlations between the group difference 

map based on all 141 individuals and group difference maps computed based on 1000 randomly drawn sub-samples 

(80% of data; average Pearson’s correlation: 0.83).   
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Supplementary Discussion 
 
Insights gained and potential sources of noise related to using residuals as resilience scores 
 
Assessing resilient/susceptible outcomes based on the deviation of observed from expected levels of 

well-being given a certain adversity exposure is a well-established approach in the resilience literature 

(Bowes et al., 2010; Collishaw et al., 2016; Kalisch et al., 2017; Miller-Lewis et al., 2013; Sapouna & 

Wolke, 2013; Van Harmelen et al., 2017). It addresses the issue that simple quantification of mental 

health variables can provide only limited insights into resilience or susceptibility, as they are heavily 

conflated with individual differences in adversity exposure (Kalisch et al., 2021). Leveraging residuals 

to quantify better or worse well-being than predicted by adversity exposure thus provides a corrected 

well-being score that is adjusted for individual differences in stressor exposure and thus allows 

comparing resilience scores of individuals with differing exposure levels. That is, ‘residuals’ in the 

resilience use case are interpreted as ‘residual variance in mental health problems’ that is not explained 

by the normative response to exposure, and therefore indicate individually weaker response (resilience) 

or a stronger response (susceptibility). It is thus analogous to the process of correcting a dependent 

variable for potential confounders such as age or sex.  

 While the basic assumption of this approach is that residualized mental health outcomes reflect 

degrees of resilience/susceptibility, there are other potential influences such as 1) measurement error 

and noise related to the questionnaires used, 2) noise related to the performance of our prediction model, 

and 3) confounding influences of other environmental influences.   

 

1) Self-report / retrospectivity biases may pose one source of measurement error, e.g. for the reporting 

of childhood maltreatment (Baldwin et al., 2019), despite the relatively short reporting time 

windows of the current study. It should be noted, however, that such sources of measurement error 

are not unique to / caused by the residual approach, but rather persist from the original measures of 

psychosocial well-being. The resilience scores should therefore not contain more measurement error 

than the original measures of psychosocial well-being. In the current study, our longitudinal 

approach may further mitigate some aspects of measurement error if it is linked to e.g., self-report 

bias. That is, an individual systematically self-reporting his/her well-being as a bit better than it is 

will receive higher resilience scores at all time points. However, as our study investigates intra-

individual change, such a general offset in resilience scores would not affect change scores, whereas 

it would affect cross-sectional analyses more strongly. 

2) Another question is how well our prediction model controls for differences in adversity exposure in 

order to reveal resilient / susceptible responses – and to what extend influence is still uncontrolled 

for, thus causing noise in in our measure of individual resilience. The amount of variance explained 

by our model (approx. 21%) is comparable with previous work reporting 24% of variance explained 

for the prediction of psychosocial functioning from family experiences in longitudinal settings (Van 
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Harmelen et al., 2017); 21% when predicting internalizing symptoms from general life stressors 

during the covid pandemic (Veer et al., 2021); or 28% when predicting psychosocial functioning 

from childhood adversity (González-García et al., 2023). We thus conclude that our model controls 

for exposure to a comparable degree as common resilience models.   

3) Capturing meaningful variation in psychological outcomes is complicated by the complex influence 

of a multitude of interacting factors, which likely contribute to the variance not explained by our 

model. Such factors may include genetic predispositions, other environmental risk or protective 

factors not measured here, but likely also sources of noise we cannot quantify. For instance, an 

individual with a genetic predisposition for mental illness may systematically show lower 

psychological well-being, which cannot fully be explained by adversity exposure and would thus 

create a bias in that individuals’ derived resilience scores. Similar to 1), if general offsets in 

resilience scores exist due to e.g., a genetic predisposition, studying longitudinal change helps us to 

account for such an offset. 

 
Overall, our results using resilient psychosocial functioning scores suggest a central role for multi-modal 

prefrontal maturation and more wide-spread re-organization of association cortices for resilience and 

susceptibility during adolescence, tested against null models by non-parametric permutation. This 

observation is well in line with previous reports of structural and functional involvement of these brain 

regions in stress responses and susceptibility/resilience (Eaton et al., 2022; Larsen et al., 2023; Luciana 

& Collins, o. J.; Paus et al., 2008; Sydnor et al., 2021). We believe the fact that observed associations 

of residuals / resilience scores with multi-modal measures of cortical maturation survived non-

parametric permutation tests, and were found in regions previously suggested by the literature, argues 

for a dominance of meaningful variance reflected in the scores used. 
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Supplementary Methods 
 
Sample 
 
The NeuroScience in Psychiatry (NSPN; (Kiddle et al., 2018)) Cohort was recruited via NHS primary 

care services, schools, colleges, and direct advertisement for five sex and ethnicity-balanced age bins 

(14-15, 16-17, 18-19, 20-21, and >22). This ‘NSPN 2K Cohort’ completed demographic and medical, 

as well as mental health related assessments via home questionnaire packs. A ‘U-change’ MRI cohort (n 

= 318) subsample completed structural and functional scanning in either London or Cambridge, UK. All 

participants aged 16 years and over gave informed consent. Participants younger than 16 years gave 

informed assent, and consent was provided by their parent or guardian. Demographics of different sub-

samples used in this study are presented in Supplementary Figure S10. Although neuroimaging was 

only conducted in a sub-set of individuals, we performed behavioral analyses on the entire NSPN sample 

to maximize training data for ResPSF computation. 
 

 
 
Figure S10. Demographic information for different subsamples included in presented analyses. HPQ = Home 

Questionnaire Pack; UCL = University College London; IMD = Indices of multiple deprivation; WBIC: Wolfson 

Brain Imaging Centre, Cambridge; CBSU: MRC Cognition and Brain Sciences Unit, Cambridge; UCL: University 

College London, London  
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Sensitivity tests for ∆ResPSF * ∆MT association  
 

We tested whether the observed association between ∆ResPSF and ∆MT was robust to analytical choices. 

Alternative models assessed were: 

 

1. not including mean ResPSF as a covariate in the general model (1): 

 
(1) 

∆MT(parcel) ~ 1 + 𝛽∆Res_PSF *∆ResPSF + 𝛽 age*age + 𝛽 sex*sex + 𝛽 site*site, 
 
2. Including a quadratic age term to control for non-linear effects (2): 
 
(2) 

∆MT(parcel) ~ 1 + 𝛽∆Res_PSF *∆ ResPSF + 𝛽mean Res_PSF *mean ResPSF + 𝛽 age*age + 𝛽!"#!*age2  
+ 𝛽 sex*sex + 𝛽 site*site, 

 
3. Not winsorizing the input data. 
 
 
Main axis of ∆MT development 
 
For a system-level understanding of how MT change is synchronized across the cortex, we derived a 

principal axis of microstructural group-level covariance. To this end, we first computed pairwise 

correlations between ∆MT values between all pairs of regions, across individuals. This served as an 

indicator of the degree to which the slopes of ∆MT are similar between any two regions. Next, we 

applied diffusion map embedding, a nonlinear dimensionality reduction technique (Coifman & Lafon, 

2006), to the derived matrix, to capture the spatial topography of synchronized MT change on a 

unidimensional axis. Regions at the peaks of the derived axis reflect maximally different embeddings of 

MT change, whereas regions closer together on this axis change in a similar manner, across individuals.  

 In order to assess whether associations between ∆ResPSF and ∆MT follow the overall 

organizational axis of ∆MT, we correlated the unthresholded t-map with the principal axis. Significance 

of this correlation was assessed via spin-tests which correct for spatial auto-correlations (10.000 

spins; (Alexander-Bloch et al., 2018)). 

 
 
Psychosocial distress score questionnaire information 
 
Following scoring procedures described in St Clair et al. (St Clair et al., 2017), we used the following 

response system: RSE, ABQ, r-LOI, and RCMAS (Bamber et al., 2002; Reynolds & Richmond, 1978; 

Rosenberg, 1965) were scored in a four-level response system (‘never’, ‘sometimes’, ’mostly’, and 

‘always’) in which individuals indicated how frequently the emotion or behavior described by an item 
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applied to them within the previous two weeks. All but five RSE items were negatively worded, but they 

were not reversed for the factor analysis. For the ABQ, the large majority of individuals did not ever 

select the ‘mostly’ and ‘always’ categories, which is why responses were binarized to ‘never’ and 

‘sometimes/mostly/always’.  

The Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS; (Tennant et al., 2007)) is a 14-

item questionnaire that measures mental well-being in a positively worded fashion. Participants were 

asked to respond on a 5-point Likert scale (‘none of the time’, ‘rarely’, ‘some of the time’, ‘often’, ‘all 

of the time’) to which degree statements described their experiences in the last two weeks. Example 

items are ‘I’ve been feeling good about myself’, ’I’ve been feeling useful’, I’ve been feeling close to 

other people’. A sum score was used for present analyses.  

The Schizotypal Personality Questionnaire (SPQ; (Raine, 1991)) originally includes 74 binary 

(‘present’ or ‘absent’) self-report items designed to capture symptoms associated with the DSM-III 

definition of Schizotypal Personality disorder, such as psychotic-like experiences. We included only 

items that have previously been tested to be significantly associated and showing medium to high effect 

sizes with psychotic-like experiences as measured by the semi-structured PLIKS interview (PLIKSi; 

total score, hallucinations, delusions, and perceptual abnormalities; (Horwood et al., 2008; St Clair et 

al., 2017). Items retained based on this face validity include: SPQ 4, 9, 13, 28,31, 40, 55, 60, 61, 63 and 

64.  

 
 
Adversity questionnaires information 
 
The Life Events Questionnaire (LEQ; (Goodyer et al., 2000) asks individuals about significant life 

events that have occurred within the previous 18 months. Such significant life events include changing 

schools / college / jobs, moving, changes in family composition like death or divorce, disasters at home 

(e.g. fire), serious illness and/or hospitalization of self or someone in the close network of family and 

friends, deaths, loss of family pet, problems with or end of friendships, and others. Participants were 

instructed to focus on the most impactful event if they experienced multiple situations captured by the 

same category. Moreover, participants rated how (un)pleasant the event was (‘very pleasant’, ‘pleasant’, 

‘neither’, ‘quite unpleasant’, ‘very unpleasant’) and whether it impacted them for more than 2 weeks. 

For our analyses, we used the LEQ sum score capturing how many adverse life events (i.e., events scored 

as ‘quite unpleasant’ or ‘very unpleasant’) an individual faced within the given time period.  

 The Child Trauma Questionnaire (CTQ; (Bernstein et al., 2003)) measures abuse and neglect up 

to age 18 years on a five-point Likert scale (‘never’ to ‘always’) in five overarching categories: 

emotional abuse (e.g., ‘family members called me stupid, lazy, or ugly’), physical abuse (e.g., ‘someone 

from my family hit me so hard that I had to see a doctor or go to the hospital’), sexual abuse (e.g., 

‘someone tried to touch me in a sexual way or made me touch him/her in a sexual way’), emotional 

neglect (‘e.g., I felt loved’), physical neglect (e.g., ‘someone took me to the doctor when it was 
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necessary’). Each category contains five items. Items 2,5,7,13,19,26, and 28 were reversed before taking 

the sum score for current analyses. If data was missing for one time point but was available for other 

timepoints, the missing datapoint was imputed for that subject based on the average of the remaining 

time points. Imputation was done within the five categories separately (sessions / % per category: 

emotional abuse: 15/0.0054, physical abuse: 4/0.0014, sexual abuse: 4/0.0014, emotional neglect: 

17/0.0061, physical neglect: 19/0.0068). Moreover, the CTQ was part of the questionnaires given only 

to participants of the U-change cohort, meaning that the measurement time point did not match that of 

other questionnaires. As CTQ items are also less timepoint specific compared to e.g., the LEQ, we used 

the average CTQ rating across sessions for our analyses.   

The Alabama Parenting Questionnaire (APQ) as included in the NSPN study contains 15 items 

asking about parenting styles. These 15 items are a combination of 9 items from the original version of 

the APQ (Elgar et al., 2007), the Corporal Punishment scale (3 items), and the Involvement scale (3 

items). Participants rated the frequency of occurrences of certain parenting styles in their family on a 

five-point scale (‘never’ to ‘always), asking about positive parenting (3 items), inconsistent discipline 

(3), poor supervision (3 items), involvement (3 items), and corporal punishment (3 items). We reversed 

the ‘positive parenting’ and ‘involvement’ items so that higher scores reflect more adverse parenting 

styles. Imputation was performed in the same way as described for the CTQ. Imputed sessions/% per 

category: positive parenting: 30/0.0054, inconsistent parenting: 51/0.0062, poor supervision: 48/0.0086, 

involvement: 50/0.0090, corporal punishment: 12/0.0022. 

 The Measure of Parenting Style (MOPS; (Parker et al., 1997)) measures dysfunctional parenting 

practices in 30 items, 15 for each parent. The questionnaire covers indifference/neglect (6 items, e.g., 

’Was uninterested in me’), over-control (4 items, e.g., ‘Sought to make me feel guilty’), and abuse (5 

items, e.g. ’Physically violent or abusive of me ‘). Higher scores reflect more dysfunctional parenting 

styles in all sub-scales. Scores were first summed within categories and then across categories for the 

current analyses. 

 Socioeconomic status was indirectly derived from the Index of Multiple Deprivation (IDM) 

associated with the area a participant lived in. The MDI is based on regional income, employment rate, 

education, health and health service, crime rates, barriers to housing and serviced, living environment 

and others. IDMs were imputed based on the mean if missing (15 sessions = 0.01%). 
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Cross-sectional effects of ResPSF and ∆ ResPSF on MT 

 

In order to assess whether the observed positive association between ∆ResPSF and ∆MT in the prefrontal 

cortex co-occurs with 1) pre-existing hypo- or hypermyelination, or 2) cross-sectional differences in 

baseline MT as a correlate of ResPSF, we applied two general linear models to baseline MT data: 

 

(3) 
MTbaseline(parcel) ~ 1 + 𝛽∆ Res_PSF *∆ ResPSF + 𝛽 Res_PSF_mean * ResPSF_mean + 𝛽 age*age + 𝛽 sex*sex + 𝛽 

site*site, 
 
and  
(4) 

MTbaseline(parcel) ~ 1 + 𝛽Res_PSF_baseline * ResPSF_ baseline + 𝛽 age*age + 𝛽 sex*sex + 𝛽 site*site, 
 
 
Non-parametric permutations for +/- ∆ ResPSF group allocations 
 
Comparing maturational index (MI) patterns between individuals with increasingly resilient vs. 

vulnerable outcomes, the sample had to be divided into two groups. We followed previously published 

procedures comparing regional MI patterns between two groups via z-tests (Dorfschmidt et al., 2022). 

To further control for sampling bias, we tested differences in MI against 10,000 null-models derived by 

shuffling participant group allocations 10,000 times. In each permutation, repeated sessions of the same 

individual were allocated together, group size imbalances and distributions were controlled to resemble 

the original groups, and permutations were performed within age groups to maintain the stratified design 

of the NSPN cohort upright (see Supplementary Figure S10). 

 

 
Supplementary Figure S11. Age and sex distributions per group in the original (A) and example permuted (B) 
data (n=141 individuals). 
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Maturational index group differences via interaction model 

 

To test the robustness of the observed group differences in the MIMPC between +∆ vs. -∆ ResPSF groups 

to an alternative modeling strategy, we also analyzed the main effects of age and ∆ ResPSF group, and 

the age-by-∆ResPSF group interaction, in the full data (i.e., both groups combined) using a linear mixed 

effects model at each edge:  

 
(5) 
 
MPC(k,j) ~ 1 + 𝛽∆Res_PSF-group *∆ ResPSF-group + 𝛽 age*age + 𝛽 age*∆Res_PSF-group*age*∆Res_PSF-group + 

𝛽 sex*sex + 𝛽 site*site + 𝛾subject* (1|subject) + 𝜖 
 

where MPC(k,j) refers to the MPC at edge level, 𝛽 refers to coefficients for the fixed effects, 𝛾subject 
refers to coefficients for random effects and 𝜖 represents the residual error. 
 
We then estimated MPC14 for +∆ResPSF and -∆ResPSF groups as follows:  
 
(6) 

 
MPC14 +∆Res_PSF = 1 + 𝛽∆Res_PSF-group *1 + 𝛽age ∗ 14 + 𝛽age*∆Res_PSF -group*14*1 + 𝛽sex ∗ (1/2)  

+ 𝛽site1 *(1/3) + 𝛽site2 *(1/3) 
 

(7) 
 

MPC 14 -∆Res_PSF = 1 + 𝛽∆Res_PSF-group *0 + 𝛽age ∗ 14 + 𝛽age*∆Res_PSF-group*14*0 + 𝛽sex ∗ (1/2)  
+ 𝛽site1 *(1/3) + 𝛽site2 *(1/3) 

 
And then estimated MPC14-26 for the +∆ ResPSF and -∆ ResPSF groups: 
 
(8) 
 

MPC 14-26 +∆Res_PSF-group = 𝛽age + 𝛽age*∆Res_PSF-group ∗ 1 
 
(9) 

 

MPC 14-26-∆Res_PSF-group = 𝛽age + 𝛽age*∆Res_PSF-group ∗ 0 
 
Finally, like in the main analysis, we computed row-wise Spearman’s correlations between extracted 
MPC14 and MPC14-26 data for each group separately.  
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