001044485 001__ 1044485
001044485 005__ 20250801202301.0
001044485 0247_ $$2doi$$a10.1145/3708035.3736011
001044485 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03222
001044485 037__ $$aFZJ-2025-03222
001044485 1001_ $$00000-0001-5992-6025$$aCallaghan, Scott$$b0
001044485 1112_ $$aPEARC '25: Practice and Experience in Advanced Research Computing$$cColumbus Ohio USA$$d2025-07-21 - 2025-07-24$$wUSA
001044485 245__ $$aFifteen Years of International HPC Summer School
001044485 260__ $$bACM New York, NY, USA$$c2025
001044485 29510 $$aPractice and Experience in Advanced Research Computing 2025: The Power of Collaboration
001044485 300__ $$a1-8
001044485 3367_ $$2ORCID$$aCONFERENCE_PAPER
001044485 3367_ $$033$$2EndNote$$aConference Paper
001044485 3367_ $$2BibTeX$$aINPROCEEDINGS
001044485 3367_ $$2DRIVER$$aconferenceObject
001044485 3367_ $$2DataCite$$aOutput Types/Conference Paper
001044485 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1754033435_23131
001044485 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001044485 520__ $$aSince 2010, the International HPC Summer School (IHPCSS) has trained more than 1,500 graduate students and early-career researchers in high-performance computing (HPC). Originally a European-US collaboration, it now includes Japan, Canada, Australia and South Africa, and serves around 80 students and 40 staff each year. This paper examines the evolution of the technical program, which initially focused on domain-specific scientific applications and MPI/OpenMP programming, but later expanded to include emerging technologies like GPU acceleration, Python for HPC, big data analytics, and AI/ML. It also discusses the challenges IHPCSS faced - technical, logistical, and demographic - and how they were addressed through real-time HPC access, mentorship, and adaptable sessions for mixed-skill audiences. IHPCSS continues to provide inclusive and high-quality trainings around the world by integrating new technologies and responding to participant feedback, while maintaining the core principles of HPC.
001044485 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001044485 536__ $$0G:(DE-Juel-1)DB001492$$aBMBF 01 1H1 6013, NRW 325 – 8.03 – 133340 - SiVeGCS (DB001492)$$cDB001492$$x1
001044485 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x2
001044485 588__ $$aDataset connected to CrossRef Conference
001044485 7001_ $$00000-0002-3608-6788$$aFilinger, Weronika$$b1
001044485 7001_ $$0P:(DE-Juel1)144419$$aZhukov, Ilya$$b2$$eCorresponding author
001044485 7001_ $$00000-0003-1978-2703$$aLederer, Hermann$$b3
001044485 7001_ $$00000-0002-2354-1075$$aUrbanic, John$$b4
001044485 773__ $$a10.1145/3708035.3736011
001044485 8564_ $$uhttps://juser.fz-juelich.de/record/1044485/files/3708035.3736011.pdf$$yOpenAccess
001044485 909CO $$ooai:juser.fz-juelich.de:1044485$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001044485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144419$$aForschungszentrum Jülich$$b2$$kFZJ
001044485 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001044485 9141_ $$y2025
001044485 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044485 915__ $$0LIC:(DE-HGF)CCBYSA4$$2HGFVOC$$aCreative Commons Attribution-ShareAlike CC BY-SA 4.0
001044485 920__ $$lyes
001044485 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001044485 980__ $$acontrib
001044485 980__ $$aVDB
001044485 980__ $$aUNRESTRICTED
001044485 980__ $$acontb
001044485 980__ $$aI:(DE-Juel1)JSC-20090406
001044485 9801_ $$aFullTexts