001044494 001__ 1044494
001044494 005__ 20251006201533.0
001044494 0247_ $$2doi$$a10.1161/STROKEAHA.125.050929
001044494 0247_ $$2ISSN$$a0039-2499
001044494 0247_ $$2ISSN$$a1524-4628
001044494 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03231
001044494 037__ $$aFZJ-2025-03231
001044494 082__ $$a610
001044494 1001_ $$0P:(DE-HGF)0$$aEsser, Frauke$$b0
001044494 245__ $$aDistinct Disconnection Patterns Explain Task-Specific Motor Impairment and Outcome After Stroke
001044494 260__ $$aNew York, NY$$bAssociation$$c2025
001044494 3367_ $$2DRIVER$$aarticle
001044494 3367_ $$2DataCite$$aOutput Types/Journal article
001044494 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759753603_15390
001044494 3367_ $$2BibTeX$$aARTICLE
001044494 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044494 3367_ $$00$$2EndNote$$aJournal Article
001044494 500__ $$aThis work was funded by the Deutsche Forschungsgmeinschaft (DFG, German Research Foundation) project ID 431549029-SFB1451. Dr. Rehme was funded by the DFG (German Research Foundation) project ID310098283.
001044494 520__ $$aackground: Stroke is increasingly understood as a network disorder with symptoms often arising from disruption of white matter connectivity. Previous connectome-based lesion-symptom mapping studies revealed that poststroke motor deficits are not only associated with damage to the core sensorimotor network but also with nonsensorimotor connections. However, whether task-specific initial impairment and outcome are based on distinct disconnection patterns remains unknown.Methods: To address this question, we included lesion information and assessments of distinct aspects of upper limb motor impairment of 113 patients with early subacute stroke (mean age, 65.95 years). We used connectome-based lesion-symptom mapping, based on a normative structural connectome, and a machine learning algorithm to predict individual levels of task-specific motor impairment and outcome >3 months later.Results: We identified task-specific disconnection patterns that significantly predicted initial motor impairment and outcome and a task-general reach-to-grasp network including both sensorimotor and nonsensorimotor areas. More complex reach-to-grasp movements showed a substantial overlap in disconnections for the prediction of impairment and outcome. Conversely, disconnections indicative of more basal aspects of motor control substantially differed between the prediction of initial impairment and outcome at the chronic stage poststroke. Similarly, the significance of interhemispheric disconnections changed in a task- and time-dependent fashion.Conclusions: In summary, our study identified distinct disconnection patterns indicative of specific aspects of motor impairment and outcome after stroke, highlighting a time- and task-dependent role of the contralesional hemisphere and suggesting a domain-general compensatory role of nonsensorimotor temporal areas. From a mechanistic perspective, differences in disconnection patterns predictive of initial motor impairment versus outcome suggest a stronger dependence of basal motor control on the brain's structural reserve during motor recovery. Our results extend our current network-level understanding of task-specific motor impairment and recovery, and emphasize the potential of connectome-based lesion-symptom mapping for future clinical applications.Keywords: brain imaging; motor cortex; motor skills; recovery of function; stroke.
001044494 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001044494 536__ $$0G:(GEPRIS)431549029$$aDFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001044494 536__ $$0G:(GEPRIS)310098283$$aDFG project G:(GEPRIS)310098283 - Neurale Grundlagen der Interaktion von Post-stroke Depression und motorischer Rehabilitation nach Schlaganfall (310098283)$$c310098283$$x2
001044494 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044494 7001_ $$0P:(DE-Juel1)196848$$aPaul, Theresa$$b1
001044494 7001_ $$00000-0002-5833-4471$$aRizor, Elizabeth$$b2
001044494 7001_ $$0P:(DE-Juel1)131716$$aBinder, Ellen$$b3
001044494 7001_ $$0P:(DE-Juel1)142144$$aHensel, Lukas$$b4$$eCorresponding author
001044494 7001_ $$0P:(DE-Juel1)165784$$aRehme, Anne K.$$b5
001044494 7001_ $$0P:(DE-HGF)0$$aRingmaier, Corinna$$b6
001044494 7001_ $$00009-0006-4863-969X$$aSchönberger, Anna$$b7
001044494 7001_ $$aTscherpel, Caroline$$b8
001044494 7001_ $$0P:(DE-Juel1)131745$$aVossel, Simone$$b9
001044494 7001_ $$00000-0002-8843-9127$$aGarcea, Frank E.$$b10
001044494 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b11
001044494 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b12
001044494 7001_ $$00000-0003-4015-3151$$aGrafton, Scott T.$$b13
001044494 7001_ $$00000-0002-0161-654X$$aVolz, Lukas J.$$b14
001044494 773__ $$0PERI:(DE-600)1467823-8$$a10.1161/STROKEAHA.125.050929$$gp. STROKEAHA.125.050929$$n8$$p $$tStroke$$v56$$x0039-2499$$y2025
001044494 8564_ $$uhttps://juser.fz-juelich.de/record/1044494/files/PDF.pdf$$yOpenAccess
001044494 909CO $$ooai:juser.fz-juelich.de:1044494$$pdriver$$pVDB$$popen_access$$popenaire$$pdnbdelivery
001044494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131745$$aForschungszentrum Jülich$$b9$$kFZJ
001044494 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b12$$kFZJ
001044494 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001044494 9141_ $$y2025
001044494 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-03
001044494 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001044494 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044494 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2025-01-03$$wger
001044494 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-03
001044494 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
001044494 920__ $$lyes
001044494 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001044494 980__ $$ajournal
001044494 980__ $$aVDB
001044494 980__ $$aUNRESTRICTED
001044494 980__ $$aI:(DE-Juel1)INM-3-20090406
001044494 9801_ $$aFullTexts