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ARTICLE INFO ABSTRACT
Keywords: In electrochemical impedance spectroscopy experiments with PEM fuel cells, the applied AC current induces
PEMFC

oscillations of the mass flow across the gas diffusion layer/cathode channel interface. These oscillations perturb
the air flow velocity and pressure in the cathode channel. By analogy with Berman’s approach, the transient
Navier-Stokes equations for air flow in a channel with a permeable wall are reduced to a single equation for
the transverse profile of the streamwise flow velocity (SFV). Linearization and Fourier-transformation of this
equation leads to an ODE for the SFV perturbation amplitude. The numerical solution shows that harmonic
perturbation of the cell current density generates oscillations of the pressure gradient and SFV. As the frequency
increases, the transverse shape of the SFV oscillations amplitude flattens in the main body of the flow, while
the peaks form at the channel walls. Averaged across the channel amplitudes of pressure gradient and SFV
oscillations linearly increase along the channel. Analytical formulas for incorporation of these effects into
impedance models for PEM fuel/electrolysis cell are derived.
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1. Introduction

Laminar flow of incompressible fluid in a channel with permeable
wall(s) is of interest for applications in ultrafiltration [1] and fuel
cells [2]. In PEM fuel cells, oxygen leaves the cathode channel through
the channel/gas diffusion layer (GDL) interface to participate in the
oxygen reduction reaction (ORR), while a flux of water produced in the
ORR enters the channel through this interface. During EIS experiments,
applied AC current perturbation induces harmonic oscillations of the
aforementioned oxygen and water fluxes.

In 1953, Berman [3] considered the 2D problem of a steady-state
flow between parallel permeable walls with a constant velocity of mass
injection. He reduced the problem to a single ODE for the transverse
shape of the streamwise flow velocity (SFV) and provided an elegant
asymptotic solution. Later, Berman’s approach was used to solve the
problem of a flow in pipes and ducts with permeable walls and a vari-
able along the pipe/duct velocity of suction/injection [4-8]. However,
non-stationary effects due to the time-dependent injection velocity have
not been considered in the literature.

In 1929, Richardson and Tyler [9] reported measurements of oscil-
latory flow in a pipe with impermeable wall induced by a harmonic
longitudinal pressure gradient. They demonstrated the formation of a
velocity oscillations peak amplitude near the pipe wall. One year later,
Sexl [10] developed a model for oscillatory flow in a circular pipe and
derived a simple solution for the radial shape of the oscillations velocity
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amplitude. He showed that this amplitude is distributed along the pipe
radius according to the Bessel function with a peak (shoulder) at the
distance

L=1/% €]
@

from the wall. Here v is the kinematic viscosity of the gas and o is

the angular frequency of the perturbation. Harris, Peevt, and Wilkin-

son [11] made precise measurements which confirmed Sexl’s result.

In all these works, the velocity oscillations were induced by harmonic

variation of the longitudinal pressure gradient.

Following a pioneering work by Springer et al. [12], there has
been a growing interest in physics-based models for PEM fuel cell
impedance over the past two decades [13-34]. One of the goals of
this type of modeling is to develop fast models suitable for fitting
experimental spectra [24,25,29,30,32,35-37]. The typical stoichiom-
etry of air flow in the PEMFC cathode channel is about 2, meaning
that the oxygen concentration and current density are non-uniform
along the channel coordinate. Furthermore, oxygen concentration in
the channel oscillates due to the applied AC signal. At low air flow
stoichiometry of 2, the transport of these oscillations along the channel
leads to the formation of a low-frequency arc in the cell impedance
spectra [38,39]. So far, however, sub-models for the channel flow in
cell impedance models employed the assumption of constant (unper-
turbed) flow velocity [35,40]. It is worth noting that the models for
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Nomenclature

- Marks dimensionless variables

¢ Oxygen molar concentration, mol cm=3

F Faraday constant, C mol~?

f Dimensionless function, Eq. (10); frequency
Hz

S Characteristic frequency, Hz, Eq. (35)

Jo Mean cell current density, A cm™2

h Channel depth, cm

3 Imaginary part

i Imaginary unit

i Volumetric exchange current density,
A cm™3

k Constant of integration, Eq. (23)

L Channel length, cm

I, Distance from the peak to the wall, Eq. (1)

M, M, Water and oxygen molar masses, kg mol~!

p Pressure, Pa

R Dimensionless parameter, Eq. (13)

Re Reynolds number, Eq. (9)

R Real part

t Time, s

u, v Flow velocity components, m s~1

uq Inlet flow velocity, m s~

w Velocity of mass suction/injection, m s~!

X Coordinate along the air channel, m

y Coordinate through the channel depth, m

Subscripts:

0 Steady-state value

1 Small-amplitude perturbation

Greek:

a Water transfer coefficient through the
membrane

A Air flow stoichiometry

v Flow kinematic viscosity, m? s—1

P Air density, kg m™3

) Dimensionless parameter, Eq. (37)

v Dimensionless stream function, Eq. (10)

® Angular frequency, s~!

electrochemical pressure and concentration impedance spectroscopy do
take into account the cathode flow velocity oscillations induced by the
applied pressure perturbation either at the channel inlet or outlet [41—
43]. However, to the best of our knowledge, SFV oscillations induced
by the perturbation of the mass flow injected into the cathode channel
have not yet been considered in impedance modeling.

The air flow in the cathode channel of PEM fuel cells has been
studied by means of numerical solution of 2D or 3D fluid dynamics
equations using CFD solvers [44-48]. This method requires a sophis-
ticated software and powerful computers and it is hardly suitable for
incorporation into cell impedance models.

The Reynolds number of the flow in a fuel cell channel is typically
well below 1000 and hence such flow is laminar. Laminar subsonic
flow in a channel can be treated as incompressible [49]. Below, the
unsteady laminar flow of an incompressible fluid between parallel
walls with a time-dependent mass injection through one of the walls is
considered. In analogy to Berman’s approach, the system of unsteady
2d Navier-Stokes equations is reduced to a single 1d transient equation
for the transversal shape of the SFV. The equation allows us to study
the flow response to a small-amplitude harmonic perturbation of the
mass injection velocity. The aim of the work is to answer the question
of what happens to the flow in the cathode channel of a PEM fuel
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cell when AC current perturbations are applied in electrochemical
impedance spectroscopy (EIS) experiments and how these effects can
be incorporated into impedance models suitable for spectra fitting.

It is shown that the harmonic injection velocity causes longitudinal
oscillations in the SFV and pressure gradient. At low frequencies, the
amplitude of the SFV oscillations has a parabolic Poiseuille-like shape
across the channel. As the frequency increases, this shape flattens in
the main body of the flow, while two sharp peaks form at the distance
given by Eq. (1) from the channel walls. The average across the channel
amplitudes of the pressure gradient and the flow velocity oscillations
increase linearly with the distance along the channel. To illustrate the
solutions, we calculate the amplitude of the SFV oscillations induced in
PEM fuel and electrolysis cells by small harmonic perturbations of the
cell current typical for EIS.

2. Model
2.1. Basic equations

Consider the laminar flow of an incompressible fluid between par-
allel walls separated by the distance h, with the upper wall permeable
to mass injection (Fig. 1). Water injected in the PEM fuel cell channel
is assumed to be in the gas phase. Possible water condensation in
the channel is neglected. The momentum conservation Navier-Stokes
equations for the streamwise u and normal v flow velocity components
are [49]

ou  Ou . du 1 9dp 0*u . 0%u
—tu—+v—=——-—+v|—+— 2
ot “ox Ty T Toox V<dx2 9y @
ov  ov v 10p *v v
—tu—+v—=—-——-—+v|—=+— 3
or " Yox Uay p oy V<ax2 0y? @

Here p is the pressure, p the flow density, and v the flow kinematic
viscosity. As p is constant, the continuity equation reads
du + ov

) 4
Jox  dy Q)
Introducing dimensionless variables
= tu_o X= x 5=2 0= L2 b= L
ne n y n ” > o B
~ . wh
=5 a=2 ©)
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Egs. (2)—(4) transform to
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0% = 0y ®
where

ugh
Re= — 9

is the inlet Reynolds number, u, the mean over the y-axis streamwise
component of inlet flow velocity, and 4 the channel depth.
In analogy to Berman’s work [3], we introduce a stream function

w=(1+/0iw(f,¢) df)f(f,iz) 10)

where @ is the dimensionless velocity of injection. Setting
oy dy

= =_ 11
“=o5 YT Tz (11)
Eq. (4) is satisfied. For i and & we thus have

i=1+Rf', b=-f 12)

where

Rz/xw(;,g) de a3)
0
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Fig. 1. Schematic of the channel. The hatched area indicates the permeable wall
through which the mass enters or leaves the channel.

and the prime sign denotes the partial derivatives of f over y and w
over x:
6f - ow
’ , r= 2w 14
F=5% =% 19
Note that, strictly speaking, f in Eq. (10) is also a function of %, and
the exact expression for & in Eq. (12) is
b=—af-(+RL (15)
0%
However, under conditions typical of the problems discussed, R and
the derivative 0/ /0% are small. An estimate shows that the second
term in Eq. (15) is four orders of magnitude smaller than the first one
(Appendix), and it can be safely neglected.
Substituting Eqgs. (12) into Egs. (6), (7) we come to
o1+ R)f’ 9p

A +(1+RE(f'f - ff")=-= +R (@ +A+R)f") (16)

a(li)f) ~/ @_L ~I ~ ol
—— (@* -+ R )ff = % Re(w f+of") a7
Differentiating Eq. (16) over y and Eq. (17) over X we arrive at

o+ R)f"

( +at ) +(1+R)w(f/f”—ff”’)

__i @ i 1 ! "

= a9<M>+Re(wf +1+R) ") (18)
(3(1]}’f) o~ " o0 (0p " ~1 o
- +(@d' ~(1+R") [ = - <5> ﬁ( f+a' ") (19)

Subtracting Eq. (19) from Eq. (18) the terms with pressure gradient
cancel out and we come to

%((1+R)f’/+w’f> + A+ R (f11" - ")

_ ( 5@ —(1+ R) N”)ffl — Rl ( ' (L + R+ N"'f) (20)

Eq. (20) is the general equation for the problem of a flow in a channel
with a non-uniform along X, time-dependent velocity of mass injection.
The boundary conditions for Eq. (20) follow from Egs. (12) and the
no-slip condition at the walls

fh=1 fM=0, fO=r©0)=0 (21

Here, /(1) = 1, follows from the second of Egs. (12), the zero deriva-
tives f/(0) = f’(1) = 0 mean the no-slip conditions, and zero f(0) = 0
means the impermeable wall at j = 0.

2.2. Small-amplitude oscillations of a uniform along % injection velocity

Below, we consider a simpler case of uniform along X injection
velocity w(f) Setting in Eq. (20) R = X and chalking out the terms

with @', @, and @'", we arrive at

X ow .y af” ~ (ol o " N

L _ - =1 22

(1+)~ch)) T vl = 1) = 22)
Eq. (22) can be integrated over j once, leading to

X ow 0f " fm

—_— =k, 2

(1+;~cw)azf+a a(f f =11 - Re (23)
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where k is the constant parameter determined from solution of Eq. (23)
with the four boundary conditions, Eq. (21). Eq. (23) is the non-
stationary extension of the steady-state Eq. (24) derived by Berman [3]:

@ (11 = ff") - f

Indeed, Eq. (24) is obtained by chalking out the terms with time deriva-
tives in Eq. (23). Note that the transient term in Eq. (23) parametrically
depends on X.

Below, the subscripts 0 and 1 mark the static variables and the
small-amplitude perturbations, respectively. Substituting

=k (24)

W(A) = Wy + 0, (@) exp(i@h),
F@D = fo) + f1(@, §) exp(idD),
k=ko+k

[0 ] < |ty

[f1l < | fol (25)

into Eq. (23), neglecting terms with the perturbation product and
subtracting the static Eq. (24), we come to a linear problem for the
complex perturbation amplitude f,(®, y):

L xS,
10 —
1 + X,

+ay (fofo = fofd) =

+ f{) + o (fof! = £ = fU 1))

n
f =k, (26)
where f(7) obeys to the static Berman’s equation Eq. (24). Eq. (26)
describes the SFV response to the small-amplitude perturbation of
the injection velocity @, caused by the applied potential or current
perturbation in EIS experiments.

Eq. (26) is an ODE for the function f,(y) with ¥ and & being the
varying parameters. The parameter k, is constant; if necessary, k,
could be eliminated by differentiating Eq. (26) over y. The boundary
condition for f; at y = 1 (permeable upper wall, Fig. 1) follows from
equation gy +0; = —(y+w;)(fy+ f1). Neglecting the product &, f; and
considering that &, = -0, fy, fo(1) = 1, and §; = —0; we get f;(1) =0.
Thus, the boundary conditions for Eq. (26) are

£ = £1() = £10) = £/(0) = 0. @7

2.3. Perturbation amplitude of the pressure gradient

The 2d shape of longitudinal pressure gradient is given by Eq. (16).
Chalking out the term with @/, for the j—profile of the pressure gradient
0p/ox we get

0p _ a1+ R)f

——=———+U+Rw(Sf - f") - Lasrysm (28)
% of Re

Substituting here Egs. (25) and

b= Po(7 %) + Py (@, 7; X) exp(idt), |p;| < |Fpl (29)

and subtracting the static equation for j, we come to the linear equa-
tion for the gradient of a small pressure perturbation amplitude

i i@ (0% fo + 1+ @R f7) + 0y (1 +20%) (£3fo = fo )
+ (1 + WX (21 f] = Fof ) = 1.1Y))
- Rie((l + %) )"+ w2 1]) (30)

where the terms with the perturbation product were neglected. The first
term on the right side of Eq. (30) is proportional to i@, which shows
that dp, /9% oscillates. This makes the problem qualitatively similar (but
not equivalent) to the problem considered by Sexl [10].

3. Results and discussion
The numerical solutions of Egs. (24) and (26) discussed below are

derived using the standard Python BVP solver solve bvp. This simplicity
is a major advantage of the Berman approach used here.
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3.1. Flow in the cathode channel of a PEM fuel cell

This section demonstrates the main features of the solution to
Egs. (24) and (26) for PEM fuel cells. The cell parameters used in the
calculations are listed in Table 1. The amplitude of the applied AC
current perturbation is typical for EIS measurements with PEMFCs [50],
hence the example below shows what happens to the cathode channel
flow during EIS measurements.

The mass flux injected into the cathode channel through the chan-
nel/GDL interface is

(201 +2)M,, - M) jo

pwy = 7 31

where p is the density of air, M,, and M, are the molecular weights of
water and oxygen, respectively, a is the net water transfer coefficient
from the anode to the cathode, and jj is the local current density. For
simplicity, j, and « are assumed to be constant along the channel. The
dimensionless steady-state injection velocity is thus

(201 +20)M,, — M, ) jo

s 2
“o 4F puy 32)

The amplitude of the streamwise flow velocity oscillations &, is
determined from Eq. (12). We write

i =i+ =+ Ry+ R+ )
=~ (1+ Ro)f§+ R fy + (1 + Rp)f| (33)

where the perturbation product R f| is neglected. The first term on the
right side is the static flow velocity &), and hence i, is given by

i = R fl +(1+ Ro)f] = 0,3 f} + (1 + Do%) ] (34)

Note the frequency-independent term @,%f] in Eq. (34), which is
proportional to the perturbation amplitude @, of the injection velocity.

The Nyquist spectrum of u; at the mid-plane y = 1/2 and X = 1000
(channel outlet) obtained numerically from Egs. (26), (24) for the
parameters in Table 1 is shown in Fig. 2a. The spectrum resembles
the Warburg finite-length transport impedance [51]. The characteristic
frequency of the spectrum is about f, ~ 200 Hz (the peak of —S(u) in
Fig. 2b). Numerical calculations show that in the vicinity of half-plane
y = 1/2, the frequency f, is well described by the approximate formula

11.5v
Jo= R (35)
i.e., f, is determined by the viscous friction at the channel walls and
by the channel depth. Closer to the walls, the numerical coefficient in
Eq. (35) grows rapidly; however, the parametric dependence f, ~ v/h?
remains the same.

Of particular interest is the shape of the real part R(u;) which
represents the SFV oscillations in phase with the applied perturbation.
The j-shapes of u; at ¥ = 1000 (channel outlet) for the three fre-
quencies is shown in Fig. 3. Up to f ~ 1 Hz, the y-shape of R(#,) is
indistinguishable from the parabolic Poiseuille profile. However, with
increasing frequency, two “shoulders” form at the walls, as predicted
by Sexl [10] (Fig. 3). With further frequency increase, every shoulder
moves toward the wall, while the curve between the shoulders flattens
(solid line in Fig. 3), meaning that the bulk volume of the flow oscillates
with the same amplitude. The curves in Fig. 3 are nearly symmetrical
with respect to the half-plane j = 1/2 due to smallness of the static
injection velocity wy,.

The position of the shoulders in Fig. 3 can be calculated by consid-
ering the simpler problem of flow with zero w, = 0 and non-zero w; >
0. In other words, consider the flow at zero static injection velocity,
which is periodically perturbed by the small-amplitude AC injection
velocity w, (excited Poiseuille flow). An equation for the flow velocity
spectrum is obtained by setting @, = 0 in Eq. (26). Furthermore, at
large frequencies, the frequency independent term i, ( 1355 = fofy ) in
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Table 1
The cell parameters for the calculations of flow velocity oscillations in PEMFC cathode
channel.

Cell temperature, K 273 + 80
Cathode absolute pressure, Pa 1.5-10°
Relative humidity RH, % 50
Air flow stoichiometry A 2
Channel depth h, m 0.1-1072
Channel length L, m 1.0
Inlet air flow velocity uy, m st 5.72
Velocity of mass injection w,, m st 4.50-107*
Injection velocity perturbation amplitude w,, m s~! 0.04 - w,
Reynolds number Re 303
Cell current density j,, A m™2 104
AC amplitude of current density, A m~2 400
Net water transfer coefficient through the membrane « 0.2
Air density, p, kg m—3 1.06
Air kinematic viscosity, v, m> st 1.886 - 1073
0.4 (@
T
2 0.3
£
S
=02
o
2
£01
0.0
18 2.0 2.2 2.4 2.6
Re(u;) /cms™t
0.4
2.6
- -
‘w24 — imag 03 'n
£ £
3 )
=22 024
3 3
o]
e 01
2.0 :
1.8 0.0

107t 10° 10t 102 10° 10* 10°
Frequency / Hz

Fig. 2. (a) The Nyquist spectrum of the streamwise flow velocity oscillations amplitude
u, at the mid-plane § = 1/2 and ¥ = 1000 (channel outlet). (b) The frequency
dependence of the real and imaginary parts of the velocity spectrum in (a).
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Eq. (26) can be neglected, and this equation simplifies to
"

i (%0 f3 + 1) = 7o =k (36)

For the classical Poiseuille flow, fé = 63(1 — 7) and the solution to
Eq. (36) with the boundary conditions (27) leads to

- < (sinh (¢ 7) + sinh ( (1 — 7)) — sinh ()¢
/=

2 (cosh (¢p) — 1) — ¢ sinh ()
¢ = VidRe 37

Eq. (37) explicitly shows the linear dependence of /| on X. The dia-
monds and dots in Fig. 3 indicate the transverse shapes of the stream-
wise velocity oscillations amplitude u, at the channel outlet calculated
from Eq. (34) with fl’ from Eq. (37). As can be seen, the analytical
Eq. (37) describes the numerical result quite well.

The analytical curve for f = 10* Hz in Fig. 3 quite accurately
captures the numerical peaks position. The terms with sinh (¢ 7) and
sinh (¢ (1 — 7)) in Eq. (37) determine peaks of the perturbation ampli-
tude located at the distance I, ~ 1/|¢| = 1/ \/@Re from the wall. In
dimensional form, /, is the distance between the peak and the wall,
Eq. (1). It is worth noting that the peaks in Fig. 3 grow with % as long
as X, is small, as shown in Eq. (26). In long channels, at %, > 1
the dependence of Eq. (26) on % disappears and the peak amplitude
saturates. However, this dependence remains in the general case of a
variable with % injection velocity.

Integration of Eq. (37) over j € [0, 1] gives

(fHy=0 (38)

—-65(1 - ) Xy,

and since /01 fody = /01 65(1 — 7)dy = 1, for the average across the
channel SFV oscillations amplitude (&, ), from Eq. (34) we get

(i) = %1y (39

The mean (#;) is independent of the frequency and it grows lin-
early along the channel coordinate X. Calculations show that Eq. (39)
describes the numerical result very well.

Fig. 4 shows average over the j-coordinate negative perturbation
amplitude of the pressure gradient R(—dp, /%), obtained numerically
by integration of Eq. (30) over j. Due to the mass injection, the
amplitude of the pressure gradient oscillations increases linearly along
%. This growth is a key difference of the problem considered here
from the one reported by Sexl [10], where the amplitude of pressure
gradient oscillations does not change along %. Furthermore, the slope
of R(—ap,/0x) growth along x increases with the frequency (Fig. 4).

An approximate analytical formula for the mean over j amplitude
of oscillating pressure gradient (—dp,/d%) can be derived as follows.
Substituting into Eq. (30) the solution to Eq. (36), the Poiseuille flow
solution f, = 3j% — 2j°, and i, = 0 and integrating Eq. (30) over
y € [0, 1] yields the linear in % function

opi\ (12 &N, _\ .
(%)= (8 55)a 0
(Fig. 4, dots), where

N, =iV2»Re(l + cosh¢)/2 + (1 +1)sinh ¢
D, = V2@Re(1 + cosh ¢p) — 2(1 — i) sinh ¢p

(41)

and ¢ = Vi@Re. Note that the factors N, and D, do not contain
0,, hence (—dp,/0%) is strictly proportional to the injection velocity
oscillations amplitude @;, Eq. (40).

3.2. Flow in the water/oxygen channel of a PEM electrolysis cell

In a PEM electrolysis cell, the anode channel transports liquid
water and oxygen bubbles generated in the oxygen evolution reaction.
Calculation parameters for PEMEC are listed in Table 2. Application of
AC current perturbation with the amplitude of 10% of the cell current
density leads to the flow velocity oscillations amplitude shown in Fig. 5.
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Amplitude of pressure gradient oscillations
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Fig. 4. Mean over j-coordinate perturbation amplitude of the pressure gradient
—(R (dp,/0%)), i.e., Eq. (30) averaged over j-coordinate. Points — approximate ana-
lytical solution, Eq. (40).
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Fig. 5. Transverse shape of the amplitude of the SFV oscillations for the indicated
frequencies at X = 1000 (channel outlet).

Table 2
The cell parameters for the calculations of flow velocity oscillations in PEM electrolysis
cell channel.

Water flow stoichiometry 4 100
Inlet flow velocity u,, m s~ 4.66- 1072
Velocity of mass injection w,, m st 9.53- 1077
Reynolds number Re 128
Cell current density j,, A m—2 10*
AC amplitude of current density, A m~2 103
Water/oxygen volume ratio in the flow 0.5
Water kinematic viscosity, v, m? s~! 3.64-1077

As can be seen, due to the large flow density, this amplitude is about
0.01 cm s, much smaller than in the PEM fuel cell cathode. The
feature of the perturbed water/oxygen flow is almost flat j-shape of the
oscillations amplitude already at the AC frequency of 100 Hz (Fig. 5).

3.3. Concluding remarks

Growing with the distance amplitude of the cathode flow velocity
oscillations so far has not been considered in PEMFC impedance model-
ing. In EIS experiments, the perturbation of the mass injection velocity
is small. Nevertheless, this small value produces linearly growing along
the channel pressure gradient, which, in turn, generates growing am-
plitude of the SFV oscillations, Eq. (39). In long channels, the effect can
be quite significant to change the impedance.

The amplitude of the SFV oscillations increases with the cell current
and with the water transfer coefficient a across the membrane. For
example, if all of the water produced in the ORR and entering from
the anode side would be transported into the cathode channel (« = 1),
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Fig. 6. The effect of the injection velocity oscillations on the PEMFC spectrum. To
emphasize the effect, the net water transfer coefficient is a,, = 0.5. The cathode catalyst
layer oxygen diffusivity is D,, = 0.8-103 cm® s7!, the GDL oxygen diffusivity D, = 0.02
cm? s71, the ORR Tafel slope b = 0.03 V per exponential basis, the double layer
capacitance C,; = 20 F cm~3, the cable inductance is 1 nH and the cell active area
is 100 cm2. All the other parameters are listed in Table 1.

the amplitude of velocity/stoichiometry oscillations would increase by
a factor of five.

Comparison of the analytical and numerical solutions given above
shows that the contribution of the steady-state injection velocity w, to
the SFV and pressure gradient oscillations amplitude can be neglected
(Figs. 3-4). What matters is the amplitude w, of the injection velocity
oscillations, which is proportional to the amplitude of the applied AC
current. The simple analytical solution for f/, Eq. (37), and Egs. (39),
(40) resulting from Eq. (37) could therefore be used in PEMFC/PEMEC
impedance models.

Fig. 6 illustrates the effect of the injection velocity oscillations on
the PEMFC impedance spectrum. The spectra were calculated using
the model [32], which takes into account the transport of oxygen
perturbations along the cathode channel. Parameters for the calculation
are listed in the caption to Fig. 6 and in Table 1. As can be seen,
the oscillations of flow velocity increase the size of the low-frequency
“channel” transport arc. Qualitatively, the effect is similar to reduction
of the air flow stoichiometry.

To date, there are no measurements of pressure/velocity oscillations
in the PEMFC cathode channel during EIS testing. Direct comparison of
the model with an experiment is thus not possible. Calculation of the
cell impedance using the corrections obtained in this work would allow
to fit the experimental spectra in order to validate the model indirectly.
The results of this work will be published elsewhere.

4. Conclusions

AC current perturbation applied to the PEM fuel cell during EIS
measurements causes oscillations of the mass injection velocity into
the cathode channel through the channel/GDL interface. We report
a model to rationalize the effect of these oscillations on the flow
velocity and pressure in the channel. A transient model of laminar
incompressible flow between parallel walls, one of which is permeable
to mass suction/injection is developed. Following Berman’s approach,
two-dimensional transient Navier—Stokes equations and the continuity
equation are reduced to a single equation for the streamwise flow
velocity. Linearization and Fourier transformation lead to the ODE for
the small perturbation amplitude of this velocity upon harmonic AC
oscillations of the injection velocity.

The results show that a small perturbation of the injection velocity is
translated into oscillations of the streamwise flow velocity and pressure
gradient. At low frequencies, the transverse shape of the flow velocity
oscillations amplitude resembles the Poiseuille parabola. However, at
high frequencies, this shape flattens in the main body of the flow
and two distinct peaks form at a distance m from the walls. The
amplitude of the oscillations of streamwise flow velocity and pressure
gradient increase linearly along the channel. Simple analytical formulas
for incorporation of these effects into physics-based models for PEM
fuel/electrolysis cell impedance are derived.
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Appendix. Comparison of the terms in Eq. (15)

Omitting the term with time derivative in Eq. (20), we get the
equation which determines the steady-state solution of the problem
with variable along X injection velocity [2]:

(+ R (£ 1" = ") -

= é(zw/f// +(1 + R)f/l” + II},”f)

(@' — 1+ RD") ff
(A1)

The numerical solution of Eq. (A.1) with the parameters from Table 1
allows us to calculate the ratio r of the terms in Eq. (15):
L+ Raf /oxll;
rx)= ——
@I/,
where the subscript j means that the norm is calculated along the

j-coordinate. Calculations show that this ratio does not exceed 1074,
meaning that the second term in Eq. (15) is negligible.

(A.2)
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