001044502 001__ 1044502
001044502 005__ 20260122203303.0
001044502 0247_ $$2doi$$a10.1016/j.cortex.2025.06.012
001044502 0247_ $$2ISSN$$a0010-9452
001044502 0247_ $$2ISSN$$a1973-8102
001044502 037__ $$aFZJ-2025-03239
001044502 082__ $$a610
001044502 1001_ $$00009-0005-6602-8334$$aXia, Jing$$b0$$eFirst author
001044502 245__ $$aEarlier finish of motor planning in the premotor cortex predicts faster motor command in the primary motor cortex: Human intracranial EEG evidence
001044502 260__ $$aParis$$bElsevier Masson$$c2025
001044502 3367_ $$2DRIVER$$aarticle
001044502 3367_ $$2DataCite$$aOutput Types/Journal article
001044502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769083900_22749
001044502 3367_ $$2BibTeX$$aARTICLE
001044502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044502 3367_ $$00$$2EndNote$$aJournal Article
001044502 500__ $$aBitte Post-print ergänzen
001044502 520__ $$aThe human motor system operates under hierarchical control during finger movements. The non-primary motor cortex (premotor cortex, PM, and supplementary motor area, SMA) organizes motor planning, while the primary motor cortex (M1) is responsible for motor execution. We utilized the high temporal and spatial resolution of intracranial EEG (iEEG) to investigate how the temporal dynamics of high-gamma oscillations in these hierarchically organized motor sub-regions, during both pre-movement planning and motor execution, correlated with reaction times (RTs) in a cued finger movement task. Our results showed that high-gamma power in PM, SMA, and M1 activated sequentially. More importantly, the sustained high-gamma activation in the non-primary motor cortex and the peak latency of high-gamma power in M1 significantly predicted RTs. Specifically, the faster the activation of the non-primary motor cortex returned to baseline, the faster the motor command in M1, resulting in shorter RTs. Furthermore, pairwise phase coherence between motor areas revealed that more sustained connectivity correlated with longer RTs. These findings illustrate the relationship between the temporal profiles of high-gamma activity in human motor areas and response performance.Keywords: Finger movements; High-gamma power; Intracranial EEG; Non-primary motor cortex; Pairwise phase consistency; Primary motor cortex.
001044502 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001044502 536__ $$0G:(GEPRIS)431549029$$aDFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001044502 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
001044502 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044502 7001_ $$0P:(DE-HGF)0$$aGong, Deshan$$b1
001044502 7001_ $$0P:(DE-HGF)0$$aHan, Biao$$b2
001044502 7001_ $$0P:(DE-HGF)0$$aGuo, Qiang$$b3
001044502 7001_ $$0P:(DE-HGF)0$$aZhan, Yang$$b4
001044502 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b5
001044502 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b6$$eCorresponding author
001044502 7001_ $$aChen, Qi$$b7
001044502 773__ $$0PERI:(DE-600)2080335-7$$a10.1016/j.cortex.2025.06.012$$gVol. 190, p. 160 - 177$$p160 - 177$$tCortex$$v190$$x0010-9452$$y2025
001044502 909CO $$ooai:juser.fz-juelich.de:1044502$$pVDB
001044502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
001044502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b6$$kFZJ
001044502 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001044502 9141_ $$y2025
001044502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORTEX : 2022$$d2024-12-18
001044502 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001044502 920__ $$lyes
001044502 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001044502 980__ $$ajournal
001044502 980__ $$aVDB
001044502 980__ $$aI:(DE-Juel1)INM-3-20090406
001044502 980__ $$aUNRESTRICTED