001     1044502
005     20260122203303.0
024 7 _ |a 10.1016/j.cortex.2025.06.012
|2 doi
024 7 _ |a 0010-9452
|2 ISSN
024 7 _ |a 1973-8102
|2 ISSN
037 _ _ |a FZJ-2025-03239
082 _ _ |a 610
100 1 _ |a Xia, Jing
|0 0009-0005-6602-8334
|b 0
|e First author
245 _ _ |a Earlier finish of motor planning in the premotor cortex predicts faster motor command in the primary motor cortex: Human intracranial EEG evidence
260 _ _ |a Paris
|c 2025
|b Elsevier Masson
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1769083900_22749
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Post-print ergänzen
520 _ _ |a The human motor system operates under hierarchical control during finger movements. The non-primary motor cortex (premotor cortex, PM, and supplementary motor area, SMA) organizes motor planning, while the primary motor cortex (M1) is responsible for motor execution. We utilized the high temporal and spatial resolution of intracranial EEG (iEEG) to investigate how the temporal dynamics of high-gamma oscillations in these hierarchically organized motor sub-regions, during both pre-movement planning and motor execution, correlated with reaction times (RTs) in a cued finger movement task. Our results showed that high-gamma power in PM, SMA, and M1 activated sequentially. More importantly, the sustained high-gamma activation in the non-primary motor cortex and the peak latency of high-gamma power in M1 significantly predicted RTs. Specifically, the faster the activation of the non-primary motor cortex returned to baseline, the faster the motor command in M1, resulting in shorter RTs. Furthermore, pairwise phase coherence between motor areas revealed that more sustained connectivity correlated with longer RTs. These findings illustrate the relationship between the temporal profiles of high-gamma activity in human motor areas and response performance.Keywords: Finger movements; High-gamma power; Intracranial EEG; Non-primary motor cortex; Pairwise phase consistency; Primary motor cortex.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gong, Deshan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Han, Biao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guo, Qiang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhan, Yang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 5
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 6
|e Corresponding author
700 1 _ |a Chen, Qi
|b 7
773 _ _ |a 10.1016/j.cortex.2025.06.012
|g Vol. 190, p. 160 - 177
|0 PERI:(DE-600)2080335-7
|p 160 - 177
|t Cortex
|v 190
|y 2025
|x 0010-9452
909 C O |o oai:juser.fz-juelich.de:1044502
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CORTEX : 2022
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21