001     1044514
005     20250729202321.0
037 _ _ |a FZJ-2025-03251
100 1 _ |a Schutzeichel, Lars
|0 P:(DE-Juel1)195833
|b 0
|e Corresponding author
|u fzj
111 2 _ |a CNS 34th Annual Computational Neuroscience Meeting
|c Florence
|d 2025-07-05 - 2025-07-09
|w Italy
245 _ _ |a Dynamics of sensory stimulus representations in recurrent neural networks and in mice
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1753787481_9024
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Different stimuli elicit different transient neural responses in the brain. But how is theinformation represented in the parallel neuronal activity and how is it reshaped by the dynamics oflocal recurrent circuits? We investigate these questions in Neuropixels recordings of awake behavingmice and recurrent neural network models by inferring stimulus classes (e.g., visual or tactile) from thenetwork activity. We derive a mean-field theory that reduces the dynamics of complex networks to onlythree relevant dynamical quantities that fully determine the separability of stimulus representations.These dynamical quantities geometrically represent the length of the neural state vector, given by themean population activity $R$, and the typical overlaps Q= and Q≠ of neural state vectors representingthe variability of responses within or across stimulus classes, respectively.Mean-field theory predicts the time evolution of $R$, $Q^{=}$ , and $Q^{\neq}$ and enables us to quantitatively explainexperimental observables. The analytical theory predicts the temporal dynamics of stimulus separabilityas an interplay of firing rate dynamics and overlaps. It reveals how inhibitory balancing controls the timecourse of $R$ and chaotic dynamics control $Q^{=}$ and $Q^{\neq}$ , exposing the mechanisms underlying separabilitybetween stimuli.The analysis of mutual information of an optimally trained readout on the population signal revealsa trade-off between more information conveyed with an increasing number of stimuli, and stimuli be-coming less separable due to their increased overlap in the finite dimensional neuronal space. We findthat the experimentally observed small population activity $R$ is located in a regime where informationgrows extensively with the number of stimuli, which is sharply separated from a second regime, in whichinformation converges to zero, revealing a crucial advantage of sparse coding. Our work thus providesa novel understanding of separability of stimuli shaped by collective network dynamics.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 2
536 _ _ |a DFG project G:(GEPRIS)533396241 - Evolutionäre Optimierung neuronaler Netzwerkdynamik auf eine empfängerspezifische interareale Kommunikation (533396241)
|0 G:(GEPRIS)533396241
|c 533396241
|x 3
700 1 _ |a Bauer, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 2
|u fzj
700 1 _ |a Musall, Simon
|0 P:(DE-Juel1)175146
|b 3
|u fzj
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 4
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1044514
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)175146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21