001     1044515
005     20250729202321.0
037 _ _ |a FZJ-2025-03252
041 _ _ |a English
100 1 _ |a Schutzeichel, Lars
|0 P:(DE-Juel1)195833
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 29th International Conference on Statistical Physics
|g StatPhys29
|c Florence
|d 2025-07-13 - 2025-07-18
|w Italy
245 _ _ |a Recurrent network dynamics underlying transient sensory stimulus representations in mice
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1753787501_5448
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Different stimuli elicit different transient neural responses in the brain. How is theinformation represented in the parallel neuronal activity and how is it reshaped by thedynamics of local recurrent circuits? We investigate these questions in Neuropixels recordings of awake behaving mice and recurrent neural network models by inferring the stimulusclass from the network activity.We employ methods from statistical physics of disordered systems to derive a two-replica mean-field theory that reduces complex network dynamics to three dynamicalquantities that fully determine the separability of stimulus representations. These dynamical quantities are the mean population activity $R$ and the overlaps $Q^{=}$ and $Q^{\neq}$,representing response variability within or across stimulus classes, respectively.Mean-field theory predicts the time evolution of $R$, $Q^{=}$, and $Q^{\neq}$ and enables us to quantitatively explain experimental observables. The analytical theory predicts the temporaldynamics of stimulus separability as an interplay of firing rate dynamics, controlled byinhibitory balancing, and overlaps, governed by chaotic dynamics.The analysis of mutual information of an optimally trained readout on the populationsignal reveals a trade-off between more information conveyed with an increasing numberof stimuli, and stimuli becoming less separable due to their increased overlap in the finite-dimensional neuronal space. We find that the experimentally observed small populationactivity $R$ lies in a regime where information grows with the number of stimuli, which issharply separated from a second regime, in which information converges to zero, revealinga crucial advantage of sparse coding.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 2
536 _ _ |a DFG project G:(GEPRIS)533396241 - Evolutionäre Optimierung neuronaler Netzwerkdynamik auf eine empfängerspezifische interareale Kommunikation (533396241)
|0 G:(GEPRIS)533396241
|c 533396241
|x 3
700 1 _ |a Bauer, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 2
|u fzj
700 1 _ |a Musall, Simon
|0 P:(DE-Juel1)175146
|b 3
|u fzj
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 4
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1044515
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)195833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)175146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21