001044574 001__ 1044574
001044574 005__ 20250912110147.0
001044574 0247_ $$2doi$$a10.1038/s42005-024-01913-1
001044574 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03254
001044574 0247_ $$2WOS$$aWOS:001400076600001
001044574 037__ $$aFZJ-2025-03254
001044574 082__ $$a530
001044574 1001_ $$0P:(DE-HGF)0$$aKuchkin, Vladyslav M.$$b0$$eCorresponding author
001044574 245__ $$aSymmetry-governed dynamics of magnetic skyrmions under field pulses
001044574 260__ $$aLondon$$bSpringer Nature$$c2025
001044574 3367_ $$2DRIVER$$aarticle
001044574 3367_ $$2DataCite$$aOutput Types/Journal article
001044574 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754650865_6085
001044574 3367_ $$2BibTeX$$aARTICLE
001044574 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044574 3367_ $$00$$2EndNote$$aJournal Article
001044574 520__ $$aTopological magnetic solitons, such as skyrmions, exhibit intriguing particle-like properties that make them attractive for fundamental research and practical applications. While many magnetic systems can host skyrmions as statically stable configurations, chiral magnets stand out for their ability to accommodate a wide diversity of skyrmions with arbitrary topological charges and varied morphologies. Despite extensive investigation, a complete understanding of chiral magnetic skyrmions has remained elusive. We present a classification of all chiral skyrmions, demonstrating three classes based on their response to external magnetic field pulses: stationary, translating, and rotating. We highlight the role of magnetic texture symmetry in this classification. Skyrmions with varied dynamics offer avenues for exploring phenomena like skyrmion-skyrmion scattering that might be crucial for future applications.
001044574 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001044574 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x1
001044574 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044574 7001_ $$0P:(DE-HGF)0$$aBarton-Singer, Bruno$$b1
001044574 7001_ $$0P:(DE-HGF)0$$aBessarab, Pavel F.$$b2
001044574 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai S.$$b3$$eCorresponding author
001044574 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-024-01913-1$$gVol. 8, no. 1, p. 26$$n1$$p26$$tCommunications Physics$$v8$$x2399-3650$$y2025
001044574 8564_ $$uhttps://juser.fz-juelich.de/record/1044574/files/s42005-024-01913-1.pdf$$yOpenAccess
001044574 8767_ $$8SN-2025-00432-b$$92025-07-25$$a1200214585$$d2025-07-25$$eAPC$$jZahlung erfolgt
001044574 909CO $$ooai:juser.fz-juelich.de:1044574$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001044574 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg$$b0
001044574 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion, Greece$$b1
001044574 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Science Institute, University of Iceland, Reykjavík, Iceland$$b2
001044574 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Electrical Engineering, Linnaeus University, Kalmar, Sweden$$b2
001044574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b3$$kFZJ
001044574 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001044574 9141_ $$y2025
001044574 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044574 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044574 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001044574 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
001044574 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044574 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
001044574 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
001044574 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044574 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001044574 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
001044574 920__ $$lyes
001044574 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001044574 980__ $$ajournal
001044574 980__ $$aVDB
001044574 980__ $$aUNRESTRICTED
001044574 980__ $$aI:(DE-Juel1)PGI-1-20110106
001044574 980__ $$aAPC
001044574 9801_ $$aAPC
001044574 9801_ $$aFullTexts