001     1044574
005     20250912110147.0
024 7 _ |a 10.1038/s42005-024-01913-1
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03254
|2 datacite_doi
024 7 _ |a WOS:001400076600001
|2 WOS
037 _ _ |a FZJ-2025-03254
082 _ _ |a 530
100 1 _ |a Kuchkin, Vladyslav M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Symmetry-governed dynamics of magnetic skyrmions under field pulses
260 _ _ |a London
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754650865_6085
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Topological magnetic solitons, such as skyrmions, exhibit intriguing particle-like properties that make them attractive for fundamental research and practical applications. While many magnetic systems can host skyrmions as statically stable configurations, chiral magnets stand out for their ability to accommodate a wide diversity of skyrmions with arbitrary topological charges and varied morphologies. Despite extensive investigation, a complete understanding of chiral magnetic skyrmions has remained elusive. We present a classification of all chiral skyrmions, demonstrating three classes based on their response to external magnetic field pulses: stationary, translating, and rotating. We highlight the role of magnetic texture symmetry in this classification. Skyrmions with varied dynamics offer avenues for exploring phenomena like skyrmion-skyrmion scattering that might be crucial for future applications.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Barton-Singer, Bruno
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bessarab, Pavel F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kiselev, Nikolai S.
|0 P:(DE-Juel1)145390
|b 3
|e Corresponding author
773 _ _ |a 10.1038/s42005-024-01913-1
|g Vol. 8, no. 1, p. 26
|0 PERI:(DE-600)2921913-9
|n 1
|p 26
|t Communications Physics
|v 8
|y 2025
|x 2399-3650
856 4 _ |u https://juser.fz-juelich.de/record/1044574/files/s42005-024-01913-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044574
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Heraklion, Greece
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Science Institute, University of Iceland, Reykjavík, Iceland
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics and Electrical Engineering, Linnaeus University, Kalmar, Sweden
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145390
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:49Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21