001     1044579
005     20250905202255.0
037 _ _ |a FZJ-2025-03259
100 1 _ |a Heinze, Leonie
|0 P:(DE-Juel1)203359
|b 0
|u fzj
111 2 _ |a APS Global Physics Summit
|c Anaheim
|d 2025-03-16 - 2025-03-21
|w USA
245 _ _ |a Quantum criticality and dimensional reduction of a sawtooth chain material: a case study
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1757062823_31687
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Quantum magnets with geometrical frustration stand out due to their highly degenerate ground states and their susceptibility to be tuned regarding their effective dimensionality by applying pressure or magnetic field [1]. Such tuning can lead to quantum phase transitions from ordered to disordered states, or vice versa, with the emergent quantum critical points (QCPs) determining the deformed entropy landscapes in the respective phase diagrams. While, in general, there is a fundamental interest in using the properties arising from such distorted entropy landscapes for applications (e.g. the magnetocaloric effect for low-temperature cooling [2,3]), I address here the role of residual exchange interactions in real materials. I demonstrate that a QCP can develop on a lower effective energy scale measured against the leading exchange couplings in the system.In this talk, I present a case study on the mineral atacamite Cu$_2$Cl(OH)$_3$, a sawtooth-chain compound where the chain units [J ~ 336 K (basal-basal), J’ ~ 102 K (basal-apical)] are embedded into a weak three-dimensional network of interchain couplings [4]. I will show that the magnetic phase diagram of atacamite contains a field-induced quantum critical point at 21.9(1) T (H || c axis) which emerges on a much lower energy scale compared to the leading terms in the spin Hamiltonian derived by means of density-functional theory [4,5]. Further, the QCP separates field regions with and without long-range magnetic order. In the latter, underpinned by numerical results, the sawtooth chains decompose into two independent subunits, but far away from full field polarization of the material [5].
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
909 C O |o oai:juser.fz-juelich.de:1044579
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203359
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-3-20170926
|k JCNS-3
|l JCNS-3
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-3-20170926
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21