001044610 001__ 1044610
001044610 005__ 20250804115200.0
001044610 0247_ $$2doi$$a10.1039/D5MA00479A
001044610 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03281
001044610 0247_ $$2WOS$$aWOS:001510666400001
001044610 037__ $$aFZJ-2025-03281
001044610 082__ $$a540
001044610 1001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b0$$eCorresponding author
001044610 245__ $$aExploring compositional versatility of perovskite-like Cs 3 (Bi,Sb) 2 X 9 (X = Cl, Br, I) compounds by high-throughput experimentation
001044610 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2025
001044610 3367_ $$2DRIVER$$aarticle
001044610 3367_ $$2DataCite$$aOutput Types/Journal article
001044610 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753767664_5448
001044610 3367_ $$2BibTeX$$aARTICLE
001044610 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044610 3367_ $$00$$2EndNote$$aJournal Article
001044610 520__ $$aA high-throughput compositional screening of perovskite-like Cs3M2X9 double salts (M = Bi and Sb and X = Cl, Br, and I) allows independent variation of the M and X components, yielding one hundred single-phase products within a general synthetic approach that combines engineered precipitation of chloride and bromide precursors and their anion exchange conversion into more complex halide derivatives. The X variation at a fixed M = Bi3+ yields various single-phase Cs3Bi2X9 compounds with X = Cl, Cl + Br, Br, Br + I, and Cl + Br + I. The anion exchange in chlorides with Br + I combinations produces stable Cs3Bi2X9 compounds with all three halides simultaneously present in the lattice, and Cl, Br, and I contents varied in the ranges of ca. 40–90%, 10–60%, and 30–90%, respectively. The presence of bromide, even as a residue, enables the co-existence of Cl and I, and dictates the trigonal symmetry, in contrast to the hexagonal symmetry typical for Cs3M2I9. The compounds with X = Cl + Br + I show band gap variations in the range of 2.0–2.5 eV and linear dependencies on the iodide content and lattice parameters. The simultaneous variation of the X and M sites yields single-phase Cs3(Bi,Sb)2X9 solid-solution compounds with tailorable X and a Bi/Sb ratio varied from 0 to 1.0. All Bi/Sb families reveal a band bowing effect, with the band gaps of mixed Bi/Sb compounds being lower than those of Bi- and Sb-only counterparts. The bowing parameter depends on the X subsystem, decreasing from 0.80 eV for Cl to 0.60 eV for Cl + Br and 0.40–0.45 eV for Br and Br + I, indicating that chemical variations in the mixed Bi/Sb lattices, rather than local disorders or lattice strains, govern the band-bowing behavior.
001044610 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001044610 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044610 7001_ $$0P:(DE-Juel1)188483$$aRaievska, Oleksandra$$b1
001044610 7001_ $$0P:(DE-HGF)0$$aKinge, Sachin$$b2
001044610 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b3
001044610 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b4
001044610 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D5MA00479A$$gVol. 6, no. 14, p. 4847 - 4856$$n14$$p4847 - 4856$$tMaterials advances$$v6$$x2633-5409$$y2025
001044610 8564_ $$uhttps://juser.fz-juelich.de/record/1044610/files/d5ma00479a.pdf$$yOpenAccess
001044610 8767_ $$d2025-07-30$$eAPC$$jPublish and Read
001044610 909CO $$ooai:juser.fz-juelich.de:1044610$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001044610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b0$$kFZJ
001044610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188483$$aForschungszentrum Jülich$$b1$$kFZJ
001044610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b3$$kFZJ
001044610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b4$$kFZJ
001044610 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001044610 9141_ $$y2025
001044610 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001044610 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER ADV : 2022$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-23T09:21:41Z
001044610 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-23T09:21:41Z
001044610 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044610 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-23T09:21:41Z
001044610 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER ADV : 2022$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001044610 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001044610 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044610 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001044610 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001044610 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001044610 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001044610 920__ $$lyes
001044610 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001044610 9801_ $$aFullTexts
001044610 980__ $$ajournal
001044610 980__ $$aVDB
001044610 980__ $$aUNRESTRICTED
001044610 980__ $$aI:(DE-Juel1)IET-2-20140314
001044610 980__ $$aAPC