TY  - JOUR
AU  - Wu, Jianchang
AU  - Hu, Manman
AU  - Dai, Qingqing
AU  - Alkan, Ecem Aydan
AU  - Barabash, Anastasia
AU  - Zhang, Jiyun
AU  - Liu, Chao
AU  - Hauch, Jens
AU  - Han, Gao-Feng
AU  - Jiang, Qing
AU  - Wang, Tonghui
AU  - Seok, Sang Il
AU  - Brabec, Christoph
TI  - Highly Stable Sn─Pb Perovskite Solar Cells Enabled by Phenol‐Functionalized Hole Transporting Material
JO  - Angewandte Chemie / International edition
VL  - 64
IS  - 22
SN  - 1433-7851
CY  - Weinheim
PB  - Wiley-VCH
M1  - FZJ-2025-03282
SP  - e202424515
PY  - 2025
AB  - Sn─Pb perovskites, a most promising low bandgap semiconductor for multi-junction solar cells, are often limited by instability due to the susceptibility of Sn2+ to oxidation. Inspired by the antioxidative properties of polyphenolic compounds, we introduce the reductive phenol group and strong electronegative fluorine into an organic conjugated structure and design a multi-functional polymer with fluorine and phenol units (PF─OH). The design of PF─OH allows the effective rise in the energy barrier of Sn2+ oxidation, leading to a significant enhancement in the stability of Sn─Pb perovskite devices from 200 to 8000 h—an improvement of around 100 times. Additionally, the strong binding energy between Sn2+ and the phenol in PF─OH critically influences Sn─Pb perovskite's crystallization and grain growth, resulting in perovskite films with fewer pinholes at the buried interface and extended carrier lifetimes. This enhancement not only boosts the power conversion efficiency (PCE) to 23.61%, but also significantly improves the operational stability of the devices. Ultimately, this design strategy has been proven universal through the phenolization of a series of molecules, marking a milestone in enhancing the stability of Sn─Pb perovskites.
LB  - PUB:(DE-HGF)16
C6  - 40127212
UR  - <Go to ISI:>//WOS:001457461700001
DO  - DOI:10.1002/anie.202424515
UR  - https://juser.fz-juelich.de/record/1044611
ER  -