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Mixed ionic-electronic conducting ceramics have the potential to serve as oxygen transport membranes, thereby
facilitating the separation of pure oxygen from air for a variety of chemical conversion applications. Given that
the majority of the membrane reactors are operated in a reducing atmosphere, the stability of the materials is of
great importance. In this study, the SrTip.95.xZr0.05NixO3.5 (x = 0.01, 0.03, 0.05, 0.10, 0.15) (STZN,) powders
were successfully synthesized and subsequently sintered into membranes. Ni substitution enhances oxygen
permeability and catalytic activity via exsolution, while Zr improves structural stability by minimizing cation
mismatch. XRD results indicate a Ni solubility limit below 15 %. An increase in the Ni content results in a
corresponding enhancement in oxygen permeability, with STZN10 achieving the highest oxygen permeability
while retaining a single phase. Thermochemical stability tests were conducted by annealing samples in a
reducing atmosphere containing 2.9 % Hjy in Ar. The XRD and thermogravimetric analysis (TGA) demonstrate
that STZNy displays remarkable stability in reducing atmospheres. The presence of well-distributed Ni particles
on the surface of STZN10 is observed after annealing in 2.9 % Hy/Ar at 900°C for 48 h, proving the successful
exsolution phenomenon aiming for improved catalytic activity for applications such as partial oxidation of
methane. It can therefore be concluded that 10 % Ni-doped STZN10 is a promising material for oxygen transport
membranes in catalytic membrane reactors.

1. Introduction

Oxygen is a very important gas that can be widely applied in
different industrial areas. Despite the large availability of oxygen in the
air, the process of separating it into a pure form requires a significant
input of energy. The principal industrial techniques for the production of
pure oxygen are cryogenic distillation and pressure swing adsorption
(PSA), both of which require significant investment and operational
expenses [1]. Ceramic materials that exhibit both ionic and electronic
conductivity are well-regarded for their good performance in oxygen
transport membranes (OTMs), which have been developed for a variety
of energy applications, including air separation to produce pure oxygen
for oxyfuel combustion [2] and medical purposes [3]. Additionally, the
membranes can be utilized in membrane reactors for the production of
commodity chemicals through a range of industrial reaction systems,
including the water splitting [4,5], selective oxidation of ethane [6],

oxidative coupling of methane [7], and partial oxidation of methane [8,
9]. In the context of membrane reactor operating conditions, the gas
environment typically contains CO, CO,, Hy, or CH4. Consequently, the
membranes must exhibit high chemical stability under reducing envi-
ronments. Strontium titanate (SrTiOs), a highly stable perovskite ma-
terial, typically exhibits dielectric properties. However, its electrical
properties can be significantly altered through A/B-site doping. The
potential for oxygen vacancies and electronic defects formation enables
doped SrTiOs to conduct oxide ions, thus rendering it a mixed
ionic-electronic conductor (MIEC) for use as OTM. Over the past decade,
a variety of elements have been incorporated as dopants into the Sr or Ti
sites of strontium titanate, such as Fe [10,11], Co [12,13], Al [14-16],
Mg [17]and so on. However, the introduction of defects into the crystal
lattice through doping can also result in the deterioration of stability.
Cobalt-doped STOs can significantly enhance the oxygen permeability,
but its stability remains a significant challenge [18]. Schulze-Kiippers
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et al. [10] investigated the functional properties of SrTi; xFeyO3.5. The
findings suggest that the Fe content of 25-35 % seems promising with
considering the trade-off between stability and oxygen permeability. He
et al. [17] identified a highly stable material SrMgg 15Zr¢.05Ti0.803-5
(SMZ-Ti), which showed a good environment-induced oxygen perme-
ation performance. The membrane can facilitate water splitting on one
side while utilizing the permeated oxygen on the other side for methane
reforming.

It is noteworthy that if the dopant element can exist in multiple
oxidation states, the doped materials may also function as active cata-
lytic centers [19]. Ni can adopt multiple oxidation states when incor-
porated into the titanium sublattice, like Ni? * , Ni** and Ni**. This not
only facilitates the modification of the material’s electrical properties as
a dopant but also renders it an active site for redox reactions on the
surface of Ni-doped SrTiO3 due to the associated valence change [20].
The phenomenon of Ni exsolution in reducing atmospheres has abun-
dantly been reported in literature [21-25]. The synthesis and study of
pure Ni-doped strontium titanate have been conducted by several re-
searchers [20,26,27]. Nevertheless, the permeance as oxygen transport
membrane materials has not yet been systematically characterized. For
practical applications, especially under high-temperature or reducing
environments, structural stability becomes a critical factor. In such
conditions, the mismatch in ionic radii and valence states among B-site
cations can lead to lattice distortions and phase instability. To mitigate
this, Zr** is introduced as a co-dopant. With its high valence and
excellent resistance to reduction, Zr*" helps stabilize the cubic perov-
skite structure [17], thereby enhancing the material’s suitability for
demanding environments such as membrane reactors. Moreover, the
ionic radius of Zr** is 0.72 A, which is larger than that of Ti** (0.605 ;\)
and Ti®" (0.67 A). As a result, incorporating Zr into the perovskite
structure can not only minimize cation mismatch and stabilize the cubic
structure, but also increase the lattice parameters of STO. Therefore, we
here study SI‘Tio_gs_ero_o5Nix03_5 (X = 0.01, 0.03, 0.05, 0.10, 0.15)
(STZN,) aiming at high stability. The structure of the various materials
has been characterized, and their permeability and electrical conduc-
tivity have been determined. Furthermore, the chemical stability and Ni
exsolution phenomenon in reducing atmosphere (2.9 % Hy/Ar) were
investigated.

2. Experimental
2.1. Powder preparation

Series of Ni-doped strontium titanates SrTig g5.xZrg.05NixO3.5
(STZN,), with x = 0.01, 0.03, 0.05, 0.10, 0.15, were prepared by a solid-
state reaction method. For convenience, SrTip 94Zr¢ 05Nig.0103.5 is rep-
resented as STZN1 and so on in the following content. For the first step,
SrCO3 (Merck, 99 %), TiO5 (Merck, 99 %), ZrO, (Merck, 99 %) and NiO
(Merck, 99 %) powder were mixed with 3 mm Y-stabilized ZrO5 milling
balls and ethanol in a polyethylene bottle, and then homogenized on a
roller bench for 48 h. The mass proportions of powder, ethanol, and balls
were kept at a ratio of 1:2:3. The mixture was dried at 70 °C after milling
and then sieved through 250 um mesh. The calcination step was con-
ducted at 1200 °C for 5 h. The powder obtained after calcination was
ball milled, dried and sieved again with the same parameters as before.
The bulk membranes were formed into discs using a PW10 uniaxial press
(2 20 mm) (Fa. Paul Otto Weber GmbH, Remshalden), applying a
pressure of 70 MPa for 1.5 min. 4 % wt. polyvinyl alcohol was added as
binder to the mixture prior to pressing. The pressed STZNy membranes
were subsequently sintered at 1500 °C for 5 h, with heating and cooling
rates of 5 K/min.

2.2. Characterization methods

The particle size distribution of all the powders was measured by a
particle analyzer HORIBA LA-950V2 (Horiba European GmbH,
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Germany). The crystal structures and phase compositions were analyzed
based on X-ray diffraction (XRD) using a D4 ENDEAVOR diffractometer
(Bruker, Germany) with Cu Ka radiation. The diffraction angle (20) was
scanned over a range of 10° to 80° with a step size of 0.02° and a dwell
time of 0.75 s per step. Rietveld refinement analysis (Topas, Bruker,
Germany) was carried out to determine the quantitative compositions
and lattice parameters of the materials. The microstructure of the sur-
face and cross section was observed via scanning electron microscopy
(SEM) (Zeiss GeminiSEM 450) coupled with energy dispersive X-ray
spectroscopy (EDS, Ultim Max 170, Oxford Instruments). A thin plat-
inum layer was sputter-deposited onto the samples to improve their
electronic conductivity before analysis. X-ray photoelectron spectros-
copy (XPS) was performed using a PHI 5000 VersaProbe II system
(ULVAC-PHI Inc., USA) equipped with a monochromatic Al Ko X-ray
source (hv = 1486.6 eV). The X-ray was operated at 50 W and 15 kV with
a spot size of 200 um. Survey spectra were acquired with a pass energy of
187.5 eV, a step size of 0.8 eV, and a dwell time of 100 ms/step. High-
resolution spectra were recorded with a pass energy of 23.5 eV, a step
size of 0.1 eV, and a dwell time of 100 ms/step. Charge correction was
applied by referencing the main C 1 s peak to 285.0 eV. Cyclic ther-
mogravimetric analysis (TGA) was performed using a STA449 F1 Jupiter
calorimeter coupled with a QMS 403 C Aéolos (Netzsch) mass spec-
trometer under air and 2.9 % Hy/Ar atmospheres. The analysis was
conducted up to a final temperature of 900 °C, with a heating and
cooling rate of 10 K/min, and a gas flow rate of 50 mL/min. Each cycle
included a holding time of 2 h for both the reduction and oxidation
stages. The annealing experiments were carried out at 900 °C in
reducing atmospheres (2.9 % Hy/Ar) for durations of 10 h and 48 h,
respectively, with the heating and cooling rates of 5 °C/min. The surface
changes of sintered pellets (& 8 mmx5 mm) were investigated before
and after annealing. All fresh synthesized pellets were gas-tight, which
has been confirmed by a He-leak rate detector (Qualy test HTL 260,
Pfeiffer Vacuum GmbH, Asslar, Germany).

2.3. Electrical conductivity

The total electrical conductivity (o) was analyzed by electro-
chemical impedance spectroscopy (EIS) in air and Ar using an Alpha-A
high performance frequency analyzer (Novocontrol Technologies, Ger-
many). The measurements were conducted between 300 °C and 900 °C
in a frequency range of 10° Hz to 10! Hz with three measurements per
temperature step. Each temperature was maintained for 1 h before
measurements to ensure equilibration of the oxygen vacancy concen-
tration. The pellets (8 mmx5 mm) were prepared by polishing the
surfaces of a cylindrical specimen using 2500-grit sandpaper. Pt paste
was brushed on both side of the pellets and sintered at 900 °C for 1 h to
prepare Pt electrodes. The total conductivity o, of the sample was ob-
tained according to Eq. (1):

11
o = ﬁz (€]
Where R is the resistance () from the impedance spectroscopy, A is the
electrode area (cmz), and [ is the sample thickness (cm).

The activation energy E, was calculated according to Arrhenius Eq.
(2):

E,
In(o, T) = — 2%+ A )

Where T is temperature (K), R is the ideal gas constant

(8.31446261815324 J-K .mol 1), A is a constant.

2.4. Oxygen permeation measurement

A 4-end mode set up was applied for the oxygen permeation exper-
iments. The membranes were ground to approx. @ 14.6 mm, polished to
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1 mm thickness with 2500-grit sandpaper, and then sealed by two gold
rings (¢ 13 mm) on the both sides in a vertical quartz glass housing. The
measurements were conducted in air (250 mL min’l) or pure Oy
(200 mL-min ') at the feed side from 1000 °C to 800 °C, respectively.
Inert gas Ar was used as sweep gas at the permeate side with a flow rate
of 50 mL-min~! when the feed gas was air or O,. The flow rate was
controlled using mass flow controllers (MFCs, Bronkhorst, Germany).
The concentration of Oy and Nj in the permeate gas was detected by a
mass spectrometer (Omni Star, Pfeiffer Vacuum GmbH, Germany).

Oxygen transport is generally limited by either surface exchange
reactions or bulk diffusion, depending on the membrane thickness (L).
The key distinction between both limiting steps is the characteristic
membrane thickness (L.) [28-30]. If L. > > L, the transport is assumed
to be only limited by bulk diffusion. According to literature studies, the
characteristic thickness L. for bulk-diffusion-limited oxygen transport in
perovskite-type membranes is typically lower than 200 pm [10,31,32].
Since our membranes are significantly thicker (1 mm), it is reasonable to
assume that the oxygen flux is primarily governed by bulk diffusion. The
oxygen flux in dense membranes is commonly described using a
well-established model based on Wagner’s theory in this case, which is
typically expressed in the form of the standard Wagner equation [33,34]
(Eq. (3):

. R Py
j(02) = W'Tﬁamb' In P”ozz 3

where R corresponds to the ideal gas constant, F is the Faraday constant,
L is the thickness of the membrane, T is the membrane temperature,
Prg,and P7p, are the oxygen partial pressure for oxygen rich and lean side
of the membrane, respectively, and o4, is the ambipolar conductivity,
given by Eq. (4):
00,
0; + O,

4

Oamb =

Where o; is the ionic conductivity and o, is the electronic conductivity.
The ionic conductivity o; can be estimated with the respective ionic
transference number t; according to Egs. (5-7).

0y = 0i+0e )

amb _ (1 -t) 6)
O

0 = O¢t; (7)

In the MIEC, if 6, > > 0y, 0, = 0, 0; = 6amp- The activation energy of o;
was calculated as the same way as o, (Eq. (2)).

The driving force for OTMs is the gradient in oxygen partial pressure
at the two sides of the membrane. Since the oxygen partial pressure
depends on temperature, the driving force varies during the measure-
ment. Therefore, the permeance can be determined by normalizing the
oxygen permeation flux j(O,) with the oxygen partial pressure gradient

(In ;%), and is defined as Eq. (8):
ji(O R
Permeance = IJrE 5&)2 = 16P'2-L'T’0amb (€)]
02
E,
In(permeance) = ——=+A (€C)]

RT

The activation energy of permeance can be obtained by the Arrhe-
nius approach (Eq. (9)), where R is the ideal gas constant and A is the
pre-exponential factor.
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Table 1

Particle size distribution of as-synthesized powders of STZNj.
Name Composition d10 d50 doo

um um pum

STZN1 StTi.94Zr0.0sNi0.0103.5 0.58 1.00 2.17
STZN3 StTig.92Z10,05Ni 0.0303-5 0.58 0.99 2.18
STZN5 SrTip.90Zr0.05Ni 0.0503-5 0.54 0.96 2.58
STZN10 StTio 85Z10.0sNi 010035 0.55 1.02 3.09

3. Results and discussion
3.1. Crystal structure and microstructure

The ds( values of all the as-synthesized STZNy powders are around 1
pm (Table 1). The XRD patterns (Fig. 1) of all samples show a cubic
perovskite structure (Pm3m), which was confirmed by Rietveld refine-
ment. For the STZN15 sample, the XRD pattern shows a secondary phase
with reflections corresponding to NiO, indicating that nickel is only
partially dissolved into the perovskite structure during synthesis. This
suggests that the solubility limit of Ni in perovskitic STZ is below 15 %.
Fig. 1(b) presents an enlarged view of the patterns from 30° to 35°. It is
observed that the peaks of STZNy shift towards higher angles as the Ni
content increases, indicating a reduction in the lattice parameter. The
cubic lattice parameters of STZN1, STZN3, STZN5, STZN10 and STZN15
are 3.918, 3.917, 3.916, 3.914 and 3.913 A, respectively, according to
the Rietveld refinement. The observed changes of the lattice parameter
suggest that the introduced Ni most likely favors multiple oxidation
states, like +2 (0.69A), +3 (0.56A) and + 4 (0.48 A) [20]. The
presence of Ni*'t in a perovskite-like structure has already been
confirmed by Takeda et al. in SrNiO3 [35] and BaNiO3 [36] compounds.
Since STZN15 is not a single-phase material, it is excluded from the
following discussion. XPS measurements were carried out to determine
the valence of Ni on the membrane surface. As the Ni content of samples
STZN1 and STZN3 is below the detection limit, only the results of STZN5
and STZN10 will be discussed (Fig. 2). The Ni 2p3,/5 core-level spectra of
samples STZN5 and STZN10 can be satisfactorily fitted using peak
components characteristic of Ni(OH), [37], indicating that Ni primarily
exists in the Ni®* oxidation state on the membrane surface. However, the
presence of Ni>t cannot be entirely excluded, as it may exist in a rela-
tively low concentration and therefore be difficult to detect. The exis-
tence of mixed-valence states of Ni in Ni-containing materials has been
reported in previous studies, such as NiO/NiFe,04 [38], Lig ¢NiO [39],
NiCoy04 [40], LigNiTiO4 [41] and Ni-doped Baj4SryTiO3 [42]. The
cross-sectional SEM images (Fig. 3) of the sintered pellets show that all
the materials can achieve densification under the given sintering con-
ditions, which is also confirmed by helium leakage experiments (< 10”7
mbar~L~s’1). It is worth noting that the grain size of STZNy remains on
the same scale. Ni has been reported as an effective sintering aid for
perovskites [43-45]. The corresponding SEM images clearly indicate
that the STZN10 membrane, with 10 % Ni doping, is significantly better
sintered than the other STZN, membranes with lower Ni content, further
confirming the role of nickel dopant in enhancing membrane sintering.

3.2. Functional properties

3.2.1. Electrical conductivity

The electrical conductivity of STZNy was calculated according to the
EIS results. The conductivity increases with the Ni content increasing
and the value in air (pO2=0.2 atm) is higher than that in Ar (~
pO2=10"> atm) (Fig. 4). It is reported that SrTiO3 shows p-type con-
ductivity at this oxygen partial pressure range [46]. In the p-type region,
doped SrTiOs is a mixed conductor of oxygen vacancies and holes,
however, with the hole conduction being dominant. Materials can
generate more positive holes in air than in Ar due to the Eq. (10) [47]:
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Fig. 1. XRD patterns of the as-synthesized membranes of STZNy.
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Fig. 4. The electrical conductivity of STZNy in (a) air and (b) Ar.

Electrical conductivity o, of STZNy at 900 °C and activation energy E, in air and

1
502+ V=05 +2h

10

Ar. where V;,, O5 and h' represents an oxygen vacancy, an oxygen ion
Name o, Air E, Air o, Ar E, Ar occupying an oxygen lattice site, and an electron hole, respectively. The
900 °C (600-900 °C) 900 °C (600-900 °C) superscripts x and e denote an electroneutral state and one positive
(§/em) (kJ/mal) (§/em) (J/mol) effective charge, respectively. Table 2 lists the electrical conductivity of
STZN1 7.1x107° 101 2.0 x107° 101 STZNy at 900 °C and the activation energy in the application relevant
STZN3 2.1x1072 71 71x1073 80 t oC in ai h it
. 72 emperature range 600-900 °C in air and Ar. The activation energy
STZN5 4.1 x 10 72 1.7 x 10 78 p 61 kJ 1 to 101 kJ 1in both h ith th
STZN10 81 x10°2 61 3.3 x 10°2 66 ranges from /mol to /mol in both atmospheres, with the
value in Ar being higher than that in air.
3.2.2. Oxygen permeation
Oxygen permeation through ceramic membranes involves two pri-
mary processes [41]: gas-solid interfacial exchange occurring at the
Temperature (°C) Temperature (°C)
1050 1000 950 900 850 800 750 1000 950 900 850 800
. 7.0 . T : : . ; ®) : T . T -
a ¢ 3
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=lor e e~ b
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T :\r §
o -8.0F 3
= g 90r
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0.75 0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95
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Fig. 5. (a) Permeation flux in air and O, and (b) Permeance of 1 mm thickness of STZNy, respectively.
Table 3
Oxygen permeation flux, permeance and activation energy of STZNy and doped-STO3 materials at 1000 °C in air.
Composition Oxygen flux Log (Permeance) E, of Permeance Thickness Ref.
mL-cm~2-min ! mol-cm 257! (800-1000 °C) (mm)
kJ-mol !
SrTiO3 (STO) 1.85 x 1072 —-9.74 353 1 [10]
SrTio7sFep 25035 (STF25) 2.15 x 107! —7.44 89 1 [10]
SrTig.75C00.2503-5 (STC25) - —7.45 79 1 [13]
SrTip.65C00.3503-5 (STC35) - —7.08 65 1 [13]
SrMgo.15Zr0.05Ti0.803.5 (SMZ-Ti) 2x1072 - - 0.7 [17]
SrTig esFe.3503.5 (STF35) 2.46 x 107} -7.27 82 1 [48]
SrTig.¢Fep.35Nip.0503.5 (STFNOO5) 2.78 x 107! -7.20 89 1 [48]
StTig 64Zr0,05Nig,0103.5 (STZN1) 2.72 x 1073 -9.57 236 1 This work
SrTig.62Z10.05Ni0.0303-5 (STZN3) 1.89 x 1072 —8.58 108 1 This work
SrTig 6Z10.05Nio.0503.5 (STZN5S) 4.09 x 1072 -8.22 98 1 This work
SrTig.55Z10.05Ni0,1003-5 (STZN10) 6.23 x 1072 —-8.02 103 1 This work
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Fig. 6. Ambipolar conductivity o,m, and ionic conductivity o; of STZNy in air.

surface (surface exchange) and ion/electron transport within the bulk.
For the 1 mm thick membranes, the oxygen permeation process is
typically limited by bulk diffusion. Fig. 5(a) compares the oxygen
permeation flux of STO and STZNy measured under air/Ar (feed side/-
sweep side) and Oy/Ar conditions. The oxygen flux of STZNy is higher
than that of pure STO [10] and increases with increasing Ni content.
Since the permeability of STZN1 and STZN3 is in a very low range, only
STZN5 and STZN10 were tested in the Oy/Ar atmosphere for the
following discussion. In addition, Fig. 5(a) indicates that the oxygen flux
of STZN5 and STZN10 is higher in Oy/Ar compared to air/Ar due to the
higher oxygen partial pressure gradient. The oxygen permeance, i.e.
driving force-normalized oxygen permeation, is shown in Fig. 5(b).
STZN5 and STZN10 can maintain similar values in two different con-
ditions, confirming that the Wagner equation is applicable and, thus,
bulk diffusion is the dominating transport mechanism. Table 3 compares
the oxygen flux, permeance and activation energy E, of STZNy with
other doped-STO3; materials from literature at 1000 °C in
air/Ar-gradients. The E, values of STO (353 kJ mol™ 1) and STZN1
(236 kJ mol™!) are significantly higher than those of STZN3
(108 kJ mol ™), STZNS5 (98 kJ-mol '), and STZN10 (103 kJ-mol ™). The
significantly higher activation energy of the former samples is typically
attributed to surface exchange limitations. Additionally, the oxygen
permeation performance of STZN10 is found to be lower than that of
other B-site doped STOj3 samples reported in the literature, such as
Fe-doped STO3 material SrTi; xFexO35 (STFx) [10], cobalt-doped STO3
material SrTi; xCoxOs.5 (STCy) [13] and Fe/Ni co-doped STO3 material
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addition of a catalytic layer to the material’s surface.

Fig. 6 shows the ambipolar conductivity and ionic conductivity of
STZNy in air. The graph shows that both conductivities are of the same
order of magnitude and increase with increasing Ni content. The ionic
conductivity is slightly higher than that of ambipolar conductivity,
indicating the electronic conductivity is much higher than the ionic
conductivity. Table 4 lists the ambipolar conductivity, ionic conduc-
tivity and the corresponding activation energy as well as the respective
ionic transference numbers in air. It can be noted that the activation
energy of the ambipolar conductivity is lower than the activation energy
of the ionic conductivity. Since the ambipolar conductivity is deter-
mined by both the ionic conductivity and electronic conductivity of the
material, this reduction reflects a significant contribution of electron
transport, which lowers the overall activation energy. In addition, the
ionic conductivity of the materials is more sensitive to temperature due
to its higher activation energy compared to electronic and ambipolar
conductivity.

3.3. Thermo-chemical stability

TG measurements and annealing measurements are designed to
evaluate the thermo-chemical stability of the materials.

Fig. 7 illustrates the mass change over time for different STZNy
samples upon cyclic exposure to air and 2.9 % Hy/Ar atmosphere. The

100.1 . 100.1
@ Air-2.9% H,/Ar
100.0 4100.0
ﬁ
99.9 499.9
Z 998 499.8
<
p=
99.7 499.7
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99.6 - 99.6
——STZN10
99.5 ' A ] ' ] 99.5
0 200 400 600
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Fig. 7. Three-cycle TG measurements of STZNy in air (marked in blue) and
2.9 % H,/Ar atmospheres (marked in green).

Table 5
Mass loss of STZNy at different stages.

SrTigesxFeo3sNixOss (STFNy) [48], with the exception of Composition  First cycle Second cycle Third cycle Final
SrMgo.15Z10.05Tio.803.5 (SMZ-Ti) [17]. Although the oxygen permeation I:rass loss Hy/ Zass loss Hy/ ;’:SS loss Ha/ E:;sair
flux of STZN10 is lower than that of most B-site doped STO3 materials, it -
can be improved through various strategies, such as the improvement of STZN1 0.030 % 0.035 % 0.041 % 0.017 %
th tial r re gradient across both sides of the membran. STZN3 0.067 % 0.081 % 0.087 % 0.024 %
e oxygen' partial pressure gradie ‘a}c 0SS ,O ’s es of the me ! ane STZNS 0.102 % 0.115 % 0.120 % 0.024 %
to a certain extent based on spec1ﬁc apphcatlons, the reduction of STZN10 0.296 % 0.313 % 0.321 % 0.013 %
membrane thickness, the fabrication of asymmetric membranes, or the
Table 4
Ambipolar conductivity, ionic conductivity, activation energy and respective ionic transference numbers in air.
Name O amp_Air o;_Air E, amb E,_ionic ;800 °C ;900 °C
900 °C 900 °C 800-1000 °C 800-900 °C (kJ/mol)
(S/cm) (S/cm) (kJ/mol)
STZN1 2.54 x 1074 2.65 x 1074 - - - 3.75 x 1072
STZN3 1.67 x 103 1.85 x 103 108 119 5.44 x 1072 9.02 x 1072
STZN5 4.65 x 1072 5.32 x 1073 98 111 8.42 x 1072 1.31 x 107!
STZN10 7.48 x 1073 8.30 x 1073 110 141 4.37 x 1072 1.03 x 107"




Y. Tang et al.
¢ STZN_ 4
* *
STZN10
* b *
)
2 . | . ]
=
9]
E 1 J STZNS
STZN3
7 ] VSTZN’1
J L_J J\ )
10 20 30 40 50 60 70 80

2-Theta(Degree)

Fig. 8. XRD patterns of STZNy after three-cycle TG measurement.

mass of all samples is observed to decrease during the periods in the
reducing 2.9 % Hy/Ar environment (indicated in green) due to oxygen
release during reduction of B-site elements, and subsequently recovers
due to re-oxidation during the air exposure periods (indicated in blue).
The mass loss of STZNy under the reducing condition increases with
increasing Ni content. Notably, a two-step mass loss is observed in the
STZN10 curve, which can be estimated to the sequential reduction of the
same element, such as Ni*' — Ni®* — Ni?>* — Ni, or the stepwise
reduction of the different B-site elements, such as Ni and Ti. Table 5
compares the mass loss of STZNy at different stages. This indicates that
the mass loss slightly increases with the number of cycles. But all the
values are less than 0.33 %, which is very small. The mass change of all
the materials is practically fully reversible confirmed by XRD patterns
showing single phase structure after the final reoxidation step of TG
measurements (Fig. 8). Considering the highly reducing conditions of
2.9 % Hy/Ar at 900 °C STZNy materials show excellent cyclic reduction
stability. Therefore, STZN10 is identified as a promising candidate for
OTMs in membrane reactors, given its excellent stability and the highest
oxygen permeability among the STZNy series materials.

Sintered STZNy pellets were annealed in a 2.9 % Hy/Ar atmosphere
at 900 °C for either 10 h or 48 h to evaluate their stability under highly
reducing conditions. The XRD patterns (Fig. 9) indicate that all materials
still maintain a single-phase structure after annealing demonstrating
excellent stability. The surfaces of as-synthesized and annealed STZN10
were characterized using SEM coupled with EDS analysis (Fig. 10(a-d)).
The surface of the sample annealed for 10h displays a similar
morphology to that of the as-synthesized pellets, with no detectable Ni
on the surface. However, as the annealing time increases, Ni exsolution
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becomes obvious on the surface of the sample annealed for 48 h (Fig. 10
(c)), with the exsolved Ni highlighted in yellow in the EDS mapping
(Fig. 10(d)). The prominently bright yellow region in Fig. 10(d) is
attributed to the reduction of a remaining NiO particle, which was not
dissolved during powder synthesis. The cross-sectional SEM image
(Fig. 10(e)) reveals a uniform microstructure without detectable Ni
segregation in the bulk of the STZN10 sample after 48 h of annealing.

4. Conclusions

This study systematically investigates the microstructures, functional
properties and stability of STZNy series materials for use as OTMs. The
single-phase materials STZN1, STZN3, STZN5 and STZN10 were suc-
cessfully prepared with the solid-state reaction method. XRD charac-
terization shows that the solubility limit of Ni in the perovskite is below
15 % in this case. The findings demonstrate that the substitution of Ti
with Ni can considerably improve the oxygen permeability and con-
ductivity of STZNy in comparison to that of pure STO. It can be observed
that an increase in Ni content results in enhanced performance. All
samples still are single phase materials even annealed in 2.9 % Hy/Ar for
48 h. The surface of STZN10 exhibits uniformly distributed Ni particles
after annealing, which can be regarded as active catalytic centers for
chemical reactions in a membrane reactor. Three-cycle TG measure-
ments illustrate that all the STZN, materials exhibit reversible oxygen
exchange and, thus, excellent stability in a reducing atmosphere.

Although the oxygen permeation flux of STZN10 is lower than that of
most B-site doped STO3 materials, it demonstrates unique potential for
applications as oxygen transport membranes (OTMs) in membrane re-
actors, particularly in processes involving hydrocarbons at high tem-
peratures. The advantages of STZN10 lie in two key aspects: (1) the
incorporation of Ni creates catalytically active sites on the material
surface due to the Ni exsolution phenomenon in reducing atmosphere;
and (2) exceptional structural stability under harsh conditions. To
enhance its oxygen permeability, several optimization strategies can be
implemented, such as establishing a gradient oxygen partial pressure
driving force to a certain extent based on specific applications, fabri-
cating submicron-scale ultrathin dense layers (e.g., thickness <50 pm),
designing asymmetric membranes with a support layer-functional dense
layer composite structure, or the addition of a catalytic layer to the
material’s surface to reduce surface exchange resistance. These ap-
proaches make STZN10 a promising candidate for high temperature
membrane reactors involving separation and reaction processes like
partial oxidation of methane, combining catalytic activity with high
stability.
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