001044643 001__ 1044643
001044643 005__ 20251027132708.0
001044643 0247_ $$2doi$$a10.1016/j.actamat.2025.121374
001044643 0247_ $$2ISSN$$a1359-6454
001044643 0247_ $$2ISSN$$a1873-2453
001044643 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03307
001044643 0247_ $$2WOS$$aWOS:001585518700001
001044643 037__ $$aFZJ-2025-03307
001044643 041__ $$aEnglish
001044643 082__ $$a670
001044643 1001_ $$0P:(DE-HGF)0$$aTaoussi, S.$$b0$$eCorresponding author
001044643 245__ $$aNovel Zn-doped Nasicon-based glass-ceramic with superior Li-conductivity and enhanced properties as a solid electrolyte
001044643 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001044643 3367_ $$2DRIVER$$aarticle
001044643 3367_ $$2DataCite$$aOutput Types/Journal article
001044643 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757417295_26594
001044643 3367_ $$2BibTeX$$aARTICLE
001044643 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044643 3367_ $$00$$2EndNote$$aJournal Article
001044643 520__ $$aAmong the diverse array of solid electrolyte options, glass-ceramics hold great promise for application in all-solid-state lithium batteries. In this respect, we have effectively developed novel glasses and glass-ceramics through an innovative approach that integrates a glass-ceramic strategy with the newly introduced zinc-doped Nasicon phase. This was achieved by applying melt-quenching techniques coupled with meticulous control over the crystallization process, guided by a thorough study of crystallization kinetics. The crystallization kinetics have unveiled a two-dimensional nucleation mechanism with an activation energy of 165 kJ.mol-1. X-ray diffraction (XRD) analysis revealed the emergence of a novel Zn-doped Nasicon phase, identified as Li1.6Zn0.3Ti1.7(PO4)3, within the 30Li2O-20ZnO-20TiO2-30P2O5 glass-ceramic, a validation corroborated through Rietveld refinement. Indeed, FT-IR, Raman, and NMR analyses confirmed the formation of Li1+2xZnxTi2-x(PO4)3 Nasicon phase within the glass-ceramics structures. Moreover, SEM images, complemented by TEM observations and density assessments, provide evidence for the creation of a dense, pore-free glass-ceramic with a striped microstructure. The 30Li2O-20ZnO-20TiO2-30P2O5 glass-ceramic demonstrates outstanding chemical durability and robust mechanical properties. Notably, it exhibits high total ionic conductivity, reaching 7.14.10-4 Ω-1.cm-1 at room temperature, while displaying low electronic conductivity of 8.10-9 Ω-1.cm-1, aligning with findings from UV-visible spectroscopy. Additionally, the lithium transference number is confirmed to be 0.99, positioning the developed glass-ceramic as a highly competitive solid electrolyte in the field of energy storage. DFT calculations were conducted on the crystallized Li1.6Zn0.3Ti1.7(PO4)3 NASICON phase to gain detailed insights into its thermodynamic stability and electronic properties.
001044643 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001044643 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001044643 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044643 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001044643 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001044643 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x1
001044643 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001044643 7001_ $$0P:(DE-HGF)0$$aOuaha, A.$$b1
001044643 7001_ $$0P:(DE-HGF)0$$aNaji, M.$$b2
001044643 7001_ $$0P:(DE-HGF)0$$aHoummada, K.$$b3
001044643 7001_ $$0P:(DE-HGF)0$$aLahmar, A.$$b4
001044643 7001_ $$0P:(DE-HGF)0$$aManoun, B.$$b5
001044643 7001_ $$0P:(DE-HGF)0$$aEl bouari, A.$$b6
001044643 7001_ $$0P:(DE-Juel1)130646$$afrielinghaus, H.$$b7$$ufzj
001044643 7001_ $$0P:(DE-HGF)0$$aZhang, Y.$$b8
001044643 7001_ $$0P:(DE-HGF)0$$aBih, L.$$b9
001044643 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2025.121374$$gp. 121374 -$$p121374 -$$tActa materialia$$v298$$x1359-6454$$y2025
001044643 8564_ $$uhttps://juser.fz-juelich.de/record/1044643/files/Saida%20Taoussi%20Paper.pdf$$yPublished on 2025-07-25. Available in OpenAccess from 2027-07-25.
001044643 909CO $$ooai:juser.fz-juelich.de:1044643$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001044643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b7$$kFZJ
001044643 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001044643 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001044643 9141_ $$y2025
001044643 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
001044643 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001044643 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001044643 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
001044643 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
001044643 920__ $$lyes
001044643 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001044643 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001044643 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001044643 980__ $$ajournal
001044643 980__ $$aVDB
001044643 980__ $$aUNRESTRICTED
001044643 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001044643 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001044643 980__ $$aI:(DE-588b)4597118-3
001044643 9801_ $$aFullTexts