001044645 001__ 1044645
001044645 005__ 20250825202241.0
001044645 0247_ $$2doi$$a10.1002/solr.202500311
001044645 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03309
001044645 037__ $$aFZJ-2025-03309
001044645 082__ $$a600
001044645 1001_ $$0P:(DE-Juel1)179456$$aGebrewold, Habtamu Tsegaye$$b0$$eCorresponding author$$ufzj
001044645 245__ $$aDetailed Bias‐Dependent Free Energy Loss Analysis for Proposing Device Optimization Strategies in Silicon Heterojunction Solar Cell Design
001044645 260__ $$aWeinheim$$bWiley-VCH$$c2025
001044645 3367_ $$2DRIVER$$aarticle
001044645 3367_ $$2DataCite$$aOutput Types/Journal article
001044645 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756104563_26273
001044645 3367_ $$2BibTeX$$aARTICLE
001044645 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044645 3367_ $$00$$2EndNote$$aJournal Article
001044645 520__ $$aA multiscale electro-optical device model is employed to investigate free energy and other losses in a silicon heterojunction (SHJ) solar cell. A finite element method-based device model is coupled with free energy loss analysis (FELA) to calculate detailed bias voltage-dependent losses in terms of mAcm-2 and mWcm-2. Such an approach provides insight into identifying possible pathways for synergetic optimization and redesigning a solar cell device in both laboratory and mass production settings. The SHJ solar cell investigated in this work demonstrates that the hole-selective contact (HSC) is responsible for a significant portion of the free energy loss. At maximum power point, a power density of ~1.6 mWcm-2 at 1 sun is lost associated with carrier transport in HSC and recombination at both selective contacts. This results in a 1.6% absolute loss in power conversion efficiency (PCE). Auger recombination in the wafer limits the open-circuit voltage. The FELA suggests a pathway for synergistic optimization of the device to regain a significant portion of the ~2.6% absolute loss in PCE. Simultaneously adjusting the conductivity of a-Si layers in HSC and the concentration of free majority carriers in the wafer can improve the fill factor (FF) to ~87% and PCE close to 26%.
001044645 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001044645 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044645 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b1$$ufzj
001044645 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b2$$ufzj
001044645 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b3$$ufzj
001044645 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b4$$eCorresponding author$$ufzj
001044645 773__ $$0PERI:(DE-600)2882014-9$$a10.1002/solr.202500311$$gp. 202500311$$n15$$p202500311$$tSolar RRL$$v9$$x2367-198X$$y2025
001044645 8564_ $$uhttps://juser.fz-juelich.de/record/1044645/files/Solar%20RRL%20-%202025%20-%20Gebrewold%20-%20Detailed%20Bias%E2%80%90Dependent%20Free%20Energy%20Loss%20Analysis%20for%20Proposing%20Device%20Optimization.pdf$$yOpenAccess
001044645 909CO $$ooai:juser.fz-juelich.de:1044645$$popenaire$$pdriver$$pVDB$$popen_access$$pdnbdelivery
001044645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179456$$aForschungszentrum Jülich$$b0$$kFZJ
001044645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b1$$kFZJ
001044645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b2$$kFZJ
001044645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b3$$kFZJ
001044645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ
001044645 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001044645 9141_ $$y2025
001044645 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001044645 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044645 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL RRL : 2022$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSOL RRL : 2022$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
001044645 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044645 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001044645 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001044645 920__ $$lyes
001044645 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001044645 980__ $$ajournal
001044645 980__ $$aVDB
001044645 980__ $$aUNRESTRICTED
001044645 980__ $$aI:(DE-Juel1)IMD-3-20101013
001044645 9801_ $$aFullTexts