001     1044645
005     20250825202241.0
024 7 _ |a 10.1002/solr.202500311
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03309
|2 datacite_doi
037 _ _ |a FZJ-2025-03309
082 _ _ |a 600
100 1 _ |a Gebrewold, Habtamu Tsegaye
|0 P:(DE-Juel1)179456
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Detailed Bias‐Dependent Free Energy Loss Analysis for Proposing Device Optimization Strategies in Silicon Heterojunction Solar Cell Design
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756104563_26273
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A multiscale electro-optical device model is employed to investigate free energy and other losses in a silicon heterojunction (SHJ) solar cell. A finite element method-based device model is coupled with free energy loss analysis (FELA) to calculate detailed bias voltage-dependent losses in terms of mAcm-2 and mWcm-2. Such an approach provides insight into identifying possible pathways for synergetic optimization and redesigning a solar cell device in both laboratory and mass production settings. The SHJ solar cell investigated in this work demonstrates that the hole-selective contact (HSC) is responsible for a significant portion of the free energy loss. At maximum power point, a power density of ~1.6 mWcm-2 at 1 sun is lost associated with carrier transport in HSC and recombination at both selective contacts. This results in a 1.6% absolute loss in power conversion efficiency (PCE). Auger recombination in the wafer limits the open-circuit voltage. The FELA suggests a pathway for synergistic optimization of the device to regain a significant portion of the ~2.6% absolute loss in PCE. Simultaneously adjusting the conductivity of a-Si layers in HSC and the concentration of free majority carriers in the wafer can improve the fill factor (FF) to ~87% and PCE close to 26%.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 1
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 2
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 3
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/solr.202500311
|g p. 202500311
|0 PERI:(DE-600)2882014-9
|n 15
|p 202500311
|t Solar RRL
|v 9
|y 2025
|x 2367-198X
856 4 _ |u https://juser.fz-juelich.de/record/1044645/files/Solar%20RRL%20-%202025%20-%20Gebrewold%20-%20Detailed%20Bias%E2%80%90Dependent%20Free%20Energy%20Loss%20Analysis%20for%20Proposing%20Device%20Optimization.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044645
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179456
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL RRL : 2022
|d 2024-12-09
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21