001     1044674
005     20250930132716.0
024 7 _ |a 10.1002/smll.202505063
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03323
|2 datacite_doi
024 7 _ |a 40605351
|2 pmid
024 7 _ |a WOS:001521433000001
|2 WOS
037 _ _ |a FZJ-2025-03323
082 _ _ |a 620
100 1 _ |a Ammirati, Giuseppe
|0 0000-0002-4185-6222
|b 0
|e Corresponding author
245 _ _ |a Electron‐Hole Separation Dynamics and Optoelectronic Properties of a PCE10:FOIC Blend
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758542201_16794
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding charge separation dynamics in organic semiconductor blends is crucial for optimizing the performance of organic photovoltaic solar cells. In this study, the optoelectronic properties and charge separation dynamics of a PCE10:FOIC blend, by combining steady-state and time-resolved spectroscopies with high-level DFT calculations. Femtosecond transient absorption spectroscopy revealed a significant reduction of the exciton-exciton annihilation recombination rate in the acceptor when incorporated into the blend, compared to its pristine form. This reduction is attributed to a decrease in exciton density within the acceptor, driven by an efficient hole-separation process that is characterized by following the temporal evolution of the transient signals associated with the excited states of the donor when the acceptor is selectively excited within the blend. The analysis of these dynamics enabled the estimation of the hole separation time constant from the acceptor to the donor, yielding a time constant of (1.3 ± 0.3) ps. Additionally, this study allowed the quantification of exciton diffusion and revealed a charge separation efficiency of ≈60%, providing valuable insights for the design of next-generation organic photovoltaic materials with enhanced charge separation and improved device efficiency.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Turchini, Stefano
|0 0000-0003-0122-0614
|b 1
700 1 _ |a Toschi, Francesco
|0 0000-0002-7215-4805
|b 2
700 1 _ |a O'Keeffe, Patrick
|0 0000-0002-8676-4436
|b 3
700 1 _ |a Paladini, Alessandra
|0 0000-0002-2059-1552
|b 4
700 1 _ |a Mattioli, Giuseppe
|0 0000-0001-6331-198X
|b 5
700 1 _ |a Moras, Paolo
|0 0000-0002-7771-8737
|b 6
700 1 _ |a Sheverdyaeva, Polina M.
|0 0000-0002-4231-1638
|b 7
700 1 _ |a Milotti, Valeria
|0 0000-0003-4732-1226
|b 8
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 9
700 1 _ |a Wagner, Michael
|0 P:(DE-Juel1)191164
|b 10
|u fzj
700 1 _ |a McCulloch, Iain
|0 0000-0002-6340-7217
|b 11
700 1 _ |a Di Carlo, Aldo
|0 0000-0001-6828-2380
|b 12
700 1 _ |a Catone, Daniele
|0 0000-0002-7649-2756
|b 13
773 _ _ |a 10.1002/smll.202505063
|g p. 2505063
|0 PERI:(DE-600)2168935-0
|n 34
|p 2505063
|t Small
|v 21
|y 2025
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1044674/files/Small%20-%202025%20-%20Ammirati%20-%20Electron%E2%80%90Hole%20Separation%20Dynamics%20and%20Optoelectronic%20Properties%20of%20a%20PCE10%20FOIC%20Blend.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044674
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)191164
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21