001044675 001__ 1044675
001044675 005__ 20251008202100.0
001044675 0247_ $$2doi$$a10.1039/D5NR01722J
001044675 0247_ $$2ISSN$$a2040-3364
001044675 0247_ $$2ISSN$$a2040-3372
001044675 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03324
001044675 0247_ $$2pmid$$a40613427
001044675 0247_ $$2WOS$$aWOS:001522507300001
001044675 037__ $$aFZJ-2025-03324
001044675 082__ $$a600
001044675 1001_ $$0P:(DE-HGF)0$$aSaboor, Abdus$$b0
001044675 245__ $$aZnO quantum dots as an electron-transport layer for highly efficient and stable organic solar cells
001044675 260__ $$aCambridge$$bRSC Publ.$$c2025
001044675 3367_ $$2DRIVER$$aarticle
001044675 3367_ $$2DataCite$$aOutput Types/Journal article
001044675 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757404958_25945
001044675 3367_ $$2BibTeX$$aARTICLE
001044675 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044675 3367_ $$00$$2EndNote$$aJournal Article
001044675 520__ $$aAn advanced protocol for the mild synthesis of stable and concentrated ZnO quantum dots (QDs) yields colloidal inks suitable for applications in electron-transport layers (ETLs) of organic solar cells, delivering superior power conversion efficiency (PCE) and photodegradation stability as compared to bulk-like commercially available ZnO inks. The champion ZnO QDs-based devices with a quaternary PM6 : L8BO : BTP-eC9 : PC70BM absorber exhibit a PCE of 18.86%, surpassing similar cells with bulk-like ZnO ETL (18.15%). The ZnO QDs exhibited size-dependent electron-transport efficiency, with the highest performance achieved for QDs of 4.4–4.5 nm, decreasing for larger QDs down to the level of the bulk-like ZnO reference. A correlation between the photoluminescence and electron-transport efficiencies of ZnO quantum dots (QDs) was observed and interpreted in terms of an interplay between the defect state density and exciton confinement in size-selected ZnO QDs.
001044675 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001044675 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044675 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b1$$eCorresponding author
001044675 7001_ $$0P:(DE-Juel1)188483$$aRaievska, Oleksandra$$b2$$ufzj
001044675 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b3$$ufzj
001044675 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b4$$ufzj
001044675 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b5$$ufzj
001044675 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/D5NR01722J$$gVol. 17, no. 28, p. 16873 - 16881$$n28$$p16873 - 16881$$tNanoscale$$v17$$x2040-3364$$y2025
001044675 8564_ $$uhttps://juser.fz-juelich.de/record/1044675/files/d5nr01722j.pdf$$yOpenAccess
001044675 8767_ $$d2025-10-08$$eHybrid-OA$$jPublish and Read
001044675 909CO $$ooai:juser.fz-juelich.de:1044675$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
001044675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b1$$kFZJ
001044675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188483$$aForschungszentrum Jülich$$b2$$kFZJ
001044675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b3$$kFZJ
001044675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b4$$kFZJ
001044675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b5$$kFZJ
001044675 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001044675 9141_ $$y2025
001044675 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001044675 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2022$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044675 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2022$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001044675 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001044675 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001044675 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001044675 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001044675 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001044675 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001044675 920__ $$lyes
001044675 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001044675 9801_ $$aFullTexts
001044675 980__ $$ajournal
001044675 980__ $$aVDB
001044675 980__ $$aUNRESTRICTED
001044675 980__ $$aI:(DE-Juel1)IET-2-20140314
001044675 980__ $$aAPC