001     1044675
005     20251008202100.0
024 7 _ |a 10.1039/D5NR01722J
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03324
|2 datacite_doi
024 7 _ |a 40613427
|2 pmid
024 7 _ |a WOS:001522507300001
|2 WOS
037 _ _ |a FZJ-2025-03324
082 _ _ |a 600
100 1 _ |a Saboor, Abdus
|0 P:(DE-HGF)0
|b 0
245 _ _ |a ZnO quantum dots as an electron-transport layer for highly efficient and stable organic solar cells
260 _ _ |a Cambridge
|c 2025
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757404958_25945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An advanced protocol for the mild synthesis of stable and concentrated ZnO quantum dots (QDs) yields colloidal inks suitable for applications in electron-transport layers (ETLs) of organic solar cells, delivering superior power conversion efficiency (PCE) and photodegradation stability as compared to bulk-like commercially available ZnO inks. The champion ZnO QDs-based devices with a quaternary PM6 : L8BO : BTP-eC9 : PC70BM absorber exhibit a PCE of 18.86%, surpassing similar cells with bulk-like ZnO ETL (18.15%). The ZnO QDs exhibited size-dependent electron-transport efficiency, with the highest performance achieved for QDs of 4.4–4.5 nm, decreasing for larger QDs down to the level of the bulk-like ZnO reference. A correlation between the photoluminescence and electron-transport efficiencies of ZnO quantum dots (QDs) was observed and interpreted in terms of an interplay between the defect state density and exciton confinement in size-selected ZnO QDs.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stroyuk, Oleksandr
|0 P:(DE-Juel1)178670
|b 1
|e Corresponding author
700 1 _ |a Raievska, Oleksandra
|0 P:(DE-Juel1)188483
|b 2
|u fzj
700 1 _ |a Liu, Chao
|0 P:(DE-Juel1)201377
|b 3
|u fzj
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 4
|u fzj
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 5
|u fzj
773 _ _ |a 10.1039/D5NR01722J
|g Vol. 17, no. 28, p. 16873 - 16881
|0 PERI:(DE-600)2515664-0
|n 28
|p 16873 - 16881
|t Nanoscale
|v 17
|y 2025
|x 2040-3364
856 4 _ |u https://juser.fz-juelich.de/record/1044675/files/d5nr01722j.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1044675
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)201377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2025
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: Royal Society of Chemistry 2021
|2 APC
|0 PC:(DE-HGF)0110
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21