001044676 001__ 1044676
001044676 005__ 20250731153844.0
001044676 0247_ $$2doi$$a10.1002/smtd.202500542
001044676 037__ $$aFZJ-2025-03325
001044676 082__ $$a620
001044676 1001_ $$00009-0006-9562-9291$$aXie, Zhiqiang$$b0$$eCorresponding author
001044676 245__ $$aEmulating Synaptic Events and Nociceptor via Organic–Inorganic Perovskite Threshold Switching Memristor
001044676 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2025
001044676 3367_ $$2DRIVER$$aarticle
001044676 3367_ $$2DataCite$$aOutput Types/Journal article
001044676 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753968994_4192
001044676 3367_ $$2BibTeX$$aARTICLE
001044676 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044676 3367_ $$00$$2EndNote$$aJournal Article
001044676 520__ $$aAs artificial intelligence technology continuously advances, a growing number of bio-mimetic advanced electronic systems are rapidly emerging and being applied in various fields, including humanoid robots and tactile sensors. To effectively address progressively complex tasks and challenging work environments, integrating synaptic and nociceptive functions within a single device is crucial for enhancing the ability to perceive changes and respond accordingly to the external environment. Here, an organic–inorganic perovskite memristor that exhibits excellent volatile performance (ON/OFF ratio ≈102, endurance > 104 cycles) is presented. The device effectively replicates typical synaptic functions, encompassing short- and long-term plasticity. Moreover, due to the switching delay characteristics, essential biological nociceptive features such as threshold, no adaptation, and sensitization are also demonstrated. Further, the perovskite artificial nociceptor is successfully integrated into a thermal nociceptive system. Overall, the fusion of synaptic and nociceptive behaviors paves the way for developing more efficient and versatile systems that can mimic intricate biological processes associated with sensory perception and pain sensation.
001044676 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001044676 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044676 7001_ $$0P:(DE-Juel1)192542$$aWu, Jianchang$$b1$$ufzj
001044676 7001_ $$aLuo, Junsheng$$b2
001044676 7001_ $$aFeng, Mingjie$$b3
001044676 7001_ $$aTian, Jingjing$$b4
001044676 7001_ $$aLi, Chaohui$$b5
001044676 7001_ $$aZhang, Difei$$b6
001044676 7001_ $$aChen, Lijun$$b7
001044676 7001_ $$aLoi, Maria Antonietta$$b8
001044676 7001_ $$aTian, Bobo$$b9
001044676 7001_ $$aHao, Shenglan$$b10
001044676 7001_ $$aCheng, Long$$b11
001044676 7001_ $$0P:(DE-HGF)0$$aOsvet, Andres$$b12$$eCorresponding author
001044676 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b13$$eCorresponding author$$ufzj
001044676 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202500542$$gp. 2500542$$p2500542$$tSmall Methods$$v $$x2366-9608$$y2025
001044676 8564_ $$uhttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202500542
001044676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192542$$aForschungszentrum Jülich$$b1$$kFZJ
001044676 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b13$$kFZJ
001044676 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001044676 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-18$$wger
001044676 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2022$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001044676 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL METHODS : 2022$$d2024-12-18
001044676 920__ $$lyes
001044676 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001044676 980__ $$ajournal
001044676 980__ $$aEDITORS
001044676 980__ $$aVDBINPRINT
001044676 980__ $$aI:(DE-Juel1)IET-2-20140314
001044676 980__ $$aUNRESTRICTED